Overview

Brought to you by YData

Dataset statistics

Number of variables52
Number of observations1000098
Missing cells5067648
Missing cells (%)9.7%
Duplicate rows0
Duplicate rows (%)0.0%
Total size in memory390.1 MiB
Average record size in memory409.0 B

Variable types

Numeric14
Categorical27
Boolean7
Text1
DateTime1
Unsupported2

Alerts

Language has constant value "English" Constant
Country has constant value "South Africa" Constant
ItemType has constant value "Mobility - Motor" Constant
CrossBorder has constant value "False" Constant
StatutoryClass has constant value "Commercial" Constant
StatutoryRiskType has constant value "IFRS Constant" Constant
AccountType is highly overall correlated with Converted and 2 other fieldsHigh correlation
Bank is highly overall correlated with Converted and 2 other fieldsHigh correlation
CalculatedPremiumPerTerm is highly overall correlated with Converted and 5 other fieldsHigh correlation
Converted is highly overall correlated with AccountType and 6 other fieldsHigh correlation
CoverCategory is highly overall correlated with CoverGroup and 6 other fieldsHigh correlation
CoverGroup is highly overall correlated with CoverCategory and 5 other fieldsHigh correlation
CoverType is highly overall correlated with CoverCategory and 6 other fieldsHigh correlation
CustomValueEstimate is highly overall correlated with Converted and 3 other fieldsHigh correlation
Cylinders is highly overall correlated with makeHigh correlation
ExcessSelected is highly overall correlated with CoverCategory and 1 other fieldsHigh correlation
MainCrestaZone is highly overall correlated with PostalCode and 2 other fieldsHigh correlation
NumberOfDoors is highly overall correlated with bodytype and 1 other fieldsHigh correlation
PolicyID is highly overall correlated with UnderwrittenCoverIDHigh correlation
PostalCode is highly overall correlated with MainCrestaZone and 2 other fieldsHigh correlation
Product is highly overall correlated with CoverCategory and 5 other fieldsHigh correlation
Province is highly overall correlated with MainCrestaZone and 2 other fieldsHigh correlation
Rebuilt is highly overall correlated with AccountType and 6 other fieldsHigh correlation
RegistrationYear is highly overall correlated with CustomValueEstimateHigh correlation
Section is highly overall correlated with CoverCategory and 4 other fieldsHigh correlation
SubCrestaZone is highly overall correlated with MainCrestaZone and 2 other fieldsHigh correlation
SumInsured is highly overall correlated with CoverCategory and 2 other fieldsHigh correlation
TermFrequency is highly overall correlated with CoverCategory and 4 other fieldsHigh correlation
TotalPremium is highly overall correlated with Converted and 5 other fieldsHigh correlation
UnderwrittenCoverID is highly overall correlated with PolicyIDHigh correlation
VehicleType is highly overall correlated with CalculatedPremiumPerTerm and 4 other fieldsHigh correlation
WrittenOff is highly overall correlated with AccountType and 6 other fieldsHigh correlation
bodytype is highly overall correlated with CalculatedPremiumPerTerm and 5 other fieldsHigh correlation
cubiccapacity is highly overall correlated with kilowatts and 2 other fieldsHigh correlation
kilowatts is highly overall correlated with cubiccapacity and 2 other fieldsHigh correlation
make is highly overall correlated with CalculatedPremiumPerTerm and 8 other fieldsHigh correlation
mmcode is highly overall correlated with VehicleType and 3 other fieldsHigh correlation
IsVATRegistered is highly imbalanced (95.4%) Imbalance
Citizenship is highly imbalanced (75.3%) Imbalance
LegalType is highly imbalanced (82.2%) Imbalance
Title is highly imbalanced (81.2%) Imbalance
MaritalStatus is highly imbalanced (96.5%) Imbalance
Gender is highly imbalanced (80.1%) Imbalance
VehicleType is highly imbalanced (82.3%) Imbalance
make is highly imbalanced (74.5%) Imbalance
bodytype is highly imbalanced (73.6%) Imbalance
AlarmImmobiliser is highly imbalanced (99.7%) Imbalance
NewVehicle is highly imbalanced (98.0%) Imbalance
WrittenOff is highly imbalanced (99.9%) Imbalance
Rebuilt is highly imbalanced (99.9%) Imbalance
Converted is highly imbalanced (99.7%) Imbalance
TermFrequency is highly imbalanced (99.3%) Imbalance
ExcessSelected is highly imbalanced (69.6%) Imbalance
CoverGroup is highly imbalanced (72.6%) Imbalance
Section is highly imbalanced (67.3%) Imbalance
Product is highly imbalanced (77.4%) Imbalance
Bank has 145961 (14.6%) missing values Missing
AccountType has 40232 (4.0%) missing values Missing
CustomValueEstimate has 779642 (78.0%) missing values Missing
NewVehicle has 153295 (15.3%) missing values Missing
WrittenOff has 641901 (64.2%) missing values Missing
Rebuilt has 641901 (64.2%) missing values Missing
Converted has 641901 (64.2%) missing values Missing
CrossBorder has 999400 (99.9%) missing values Missing
NumberOfVehiclesInFleet has 1000098 (100.0%) missing values Missing
CustomValueEstimate is highly skewed (γ1 = 40.87051775) Skewed
CalculatedPremiumPerTerm is highly skewed (γ1 = 122.9745813) Skewed
TotalPremium is highly skewed (γ1 = 138.5964576) Skewed
TotalClaims is highly skewed (γ1 = 69.93311843) Skewed
CapitalOutstanding is an unsupported type, check if it needs cleaning or further analysis Unsupported
NumberOfVehiclesInFleet is an unsupported type, check if it needs cleaning or further analysis Unsupported
TotalPremium has 381634 (38.2%) zeros Zeros
TotalClaims has 997305 (99.7%) zeros Zeros

Reproduction

Analysis started2025-06-17 15:27:51.033481
Analysis finished2025-06-17 15:30:53.917357
Duration3 minutes and 2.88 seconds
Software versionydata-profiling vv4.16.1
Download configurationconfig.json

Variables

UnderwrittenCoverID
Real number (ℝ)

High correlation 

Distinct116532
Distinct (%)11.7%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean104817.55
Minimum1
Maximum301175
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size7.6 MiB
2025-06-17T18:30:53.974303image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

Quantile statistics

Minimum1
5-th percentile15033
Q155143
median94083
Q3139190
95-th percentile238232
Maximum301175
Range301174
Interquartile range (IQR)84047

Descriptive statistics

Standard deviation63293.708
Coefficient of variation (CV)0.6038465
Kurtosis0.028836845
Mean104817.55
Median Absolute Deviation (MAD)41307
Skewness0.61170958
Sum1.0482782 × 1011
Variance4.0060935 × 109
MonotonicityNot monotonic
2025-06-17T18:30:54.069174image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
85640 30
 
< 0.1%
85641 30
 
< 0.1%
85642 30
 
< 0.1%
85651 30
 
< 0.1%
85644 30
 
< 0.1%
85639 30
 
< 0.1%
85646 30
 
< 0.1%
85643 30
 
< 0.1%
85645 30
 
< 0.1%
85638 30
 
< 0.1%
Other values (116522) 999798
> 99.9%
ValueCountFrequency (%)
1 12
< 0.1%
2 12
< 0.1%
3 12
< 0.1%
4 12
< 0.1%
5 12
< 0.1%
6 12
< 0.1%
7 12
< 0.1%
11 12
< 0.1%
12 12
< 0.1%
13 12
< 0.1%
ValueCountFrequency (%)
301175 2
< 0.1%
301174 2
< 0.1%
301173 2
< 0.1%
301170 2
< 0.1%
301169 2
< 0.1%
301168 2
< 0.1%
301167 2
< 0.1%
301166 2
< 0.1%
301165 2
< 0.1%
301163 2
< 0.1%

PolicyID
Real number (ℝ)

High correlation 

Distinct7000
Distinct (%)0.7%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean7956.6825
Minimum14
Maximum23246
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size7.6 MiB
2025-06-17T18:30:54.161211image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

Quantile statistics

Minimum14
5-th percentile477
Q14500
median7071
Q311077
95-th percentile20273
Maximum23246
Range23232
Interquartile range (IQR)6577

Descriptive statistics

Standard deviation5290.0385
Coefficient of variation (CV)0.6648548
Kurtosis0.28196964
Mean7956.6825
Median Absolute Deviation (MAD)3201
Skewness0.73742825
Sum7.9574622 × 109
Variance27984507
MonotonicityNot monotonic
2025-06-17T18:30:54.249608image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
3870 10400
 
1.0%
698 4500
 
0.4%
5351 3080
 
0.3%
6924 2852
 
0.3%
9774 2392
 
0.2%
4641 2227
 
0.2%
6653 2094
 
0.2%
6641 2028
 
0.2%
6643 2010
 
0.2%
2137 1941
 
0.2%
Other values (6990) 966574
96.6%
ValueCountFrequency (%)
14 216
< 0.1%
15 225
< 0.1%
16 108
< 0.1%
17 108
< 0.1%
18 108
< 0.1%
19 108
< 0.1%
20 108
< 0.1%
21 216
< 0.1%
22 108
< 0.1%
23 108
< 0.1%
ValueCountFrequency (%)
23246 20
< 0.1%
23245 22
< 0.1%
23244 24
< 0.1%
23241 22
< 0.1%
23239 8
 
< 0.1%
23238 9
 
< 0.1%
23223 1
 
< 0.1%
23222 1
 
< 0.1%
23220 10
 
< 0.1%
23219 33
< 0.1%

TransactionMonth
Categorical

Distinct23
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size7.6 MiB
2015-08-01 00:00:00
106747 
2015-07-01 00:00:00
104143 
2015-06-01 00:00:00
102594 
2015-05-01 00:00:00
99898 
2015-04-01 00:00:00
96563 
Other values (18)
490153 

Length

Max length19
Median length19
Mean length19
Min length19

Characters and Unicode

Total characters19001862
Distinct characters13
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st row2015-03-01 00:00:00
2nd row2015-05-01 00:00:00
3rd row2015-07-01 00:00:00
4th row2015-05-01 00:00:00
5th row2015-07-01 00:00:00

Common Values

ValueCountFrequency (%)
2015-08-01 00:00:00 106747
10.7%
2015-07-01 00:00:00 104143
10.4%
2015-06-01 00:00:00 102594
10.3%
2015-05-01 00:00:00 99898
10.0%
2015-04-01 00:00:00 96563
9.7%
2015-03-01 00:00:00 92015
9.2%
2015-02-01 00:00:00 83198
8.3%
2015-01-01 00:00:00 71576
7.2%
2014-12-01 00:00:00 62457
6.2%
2014-11-01 00:00:00 48248
 
4.8%
Other values (13) 132659
13.3%

Length

2025-06-17T18:30:54.326997image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
00:00:00 1000098
50.0%
2015-08-01 106747
 
5.3%
2015-07-01 104143
 
5.2%
2015-06-01 102594
 
5.1%
2015-05-01 99898
 
5.0%
2015-04-01 96563
 
4.8%
2015-03-01 92015
 
4.6%
2015-02-01 83198
 
4.2%
2015-01-01 71576
 
3.6%
2014-12-01 62457
 
3.1%
Other values (14) 180907
 
9.0%

Most occurring characters

ValueCountFrequency (%)
0 8887486
46.8%
1 2270304
 
11.9%
- 2000196
 
10.5%
: 2000196
 
10.5%
2 1149310
 
6.0%
1000098
 
5.3%
5 866116
 
4.6%
4 344110
 
1.8%
8 126373
 
0.7%
7 119050
 
0.6%
Other values (3) 238623
 
1.3%

Most occurring categories

ValueCountFrequency (%)
(unknown) 19001862
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
0 8887486
46.8%
1 2270304
 
11.9%
- 2000196
 
10.5%
: 2000196
 
10.5%
2 1149310
 
6.0%
1000098
 
5.3%
5 866116
 
4.6%
4 344110
 
1.8%
8 126373
 
0.7%
7 119050
 
0.6%
Other values (3) 238623
 
1.3%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 19001862
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
0 8887486
46.8%
1 2270304
 
11.9%
- 2000196
 
10.5%
: 2000196
 
10.5%
2 1149310
 
6.0%
1000098
 
5.3%
5 866116
 
4.6%
4 344110
 
1.8%
8 126373
 
0.7%
7 119050
 
0.6%
Other values (3) 238623
 
1.3%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 19001862
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
0 8887486
46.8%
1 2270304
 
11.9%
- 2000196
 
10.5%
: 2000196
 
10.5%
2 1149310
 
6.0%
1000098
 
5.3%
5 866116
 
4.6%
4 344110
 
1.8%
8 126373
 
0.7%
7 119050
 
0.6%
Other values (3) 238623
 
1.3%

IsVATRegistered
Boolean

Imbalance 

Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size976.8 KiB
False
995075 
True
 
5023
ValueCountFrequency (%)
False 995075
99.5%
True 5023
 
0.5%
2025-06-17T18:30:54.374468image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

Citizenship
Categorical

Imbalance 

Distinct4
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size7.6 MiB
895210 
ZA
103721 
ZW
 
936
AF
 
231

Length

Max length2
Median length2
Mean length2
Min length2

Characters and Unicode

Total characters2000196
Distinct characters5
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st row
2nd row
3rd row
4th row
5th row

Common Values

ValueCountFrequency (%)
895210
89.5%
ZA 103721
 
10.4%
ZW 936
 
0.1%
AF 231
 
< 0.1%

Length

2025-06-17T18:30:54.426369image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-06-17T18:30:54.473322image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
ValueCountFrequency (%)
za 103721
98.9%
zw 936
 
0.9%
af 231
 
0.2%

Most occurring characters

ValueCountFrequency (%)
1790420
89.5%
Z 104657
 
5.2%
A 103952
 
5.2%
W 936
 
< 0.1%
F 231
 
< 0.1%

Most occurring categories

ValueCountFrequency (%)
(unknown) 2000196
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
1790420
89.5%
Z 104657
 
5.2%
A 103952
 
5.2%
W 936
 
< 0.1%
F 231
 
< 0.1%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 2000196
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
1790420
89.5%
Z 104657
 
5.2%
A 103952
 
5.2%
W 936
 
< 0.1%
F 231
 
< 0.1%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 2000196
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
1790420
89.5%
Z 104657
 
5.2%
A 103952
 
5.2%
W 936
 
< 0.1%
F 231
 
< 0.1%

LegalType
Categorical

Imbalance 

Distinct6
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size7.6 MiB
Individual
911929 
Private company
 
83891
Close Corporation
 
2459
Public company
 
1295
Partnership
 
331

Length

Max length17
Median length10
Mean length10.443101
Min length10

Characters and Unicode

Total characters10444124
Distinct characters23
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowClose Corporation
2nd rowClose Corporation
3rd rowClose Corporation
4th rowClose Corporation
5th rowClose Corporation

Common Values

ValueCountFrequency (%)
Individual 911929
91.2%
Private company 83891
 
8.4%
Close Corporation 2459
 
0.2%
Public company 1295
 
0.1%
Partnership 331
 
< 0.1%
Sole proprieter 193
 
< 0.1%

Length

2025-06-17T18:30:54.537207image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-06-17T18:30:54.689571image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
ValueCountFrequency (%)
individual 911929
83.8%
company 85186
 
7.8%
private 83891
 
7.7%
close 2459
 
0.2%
corporation 2459
 
0.2%
public 1295
 
0.1%
partnership 331
 
< 0.1%
sole 193
 
< 0.1%
proprieter 193
 
< 0.1%

Most occurring characters

ValueCountFrequency (%)
i 1912027
18.3%
d 1823858
17.5%
a 1083796
10.4%
n 999905
9.6%
v 995820
9.5%
l 915876
8.8%
u 913224
8.7%
I 911929
8.7%
o 95408
 
0.9%
r 90050
 
0.9%
Other values (13) 702231
 
6.7%

Most occurring categories

ValueCountFrequency (%)
(unknown) 10444124
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
i 1912027
18.3%
d 1823858
17.5%
a 1083796
10.4%
n 999905
9.6%
v 995820
9.5%
l 915876
8.8%
u 913224
8.7%
I 911929
8.7%
o 95408
 
0.9%
r 90050
 
0.9%
Other values (13) 702231
 
6.7%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 10444124
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
i 1912027
18.3%
d 1823858
17.5%
a 1083796
10.4%
n 999905
9.6%
v 995820
9.5%
l 915876
8.8%
u 913224
8.7%
I 911929
8.7%
o 95408
 
0.9%
r 90050
 
0.9%
Other values (13) 702231
 
6.7%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 10444124
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
i 1912027
18.3%
d 1823858
17.5%
a 1083796
10.4%
n 999905
9.6%
v 995820
9.5%
l 915876
8.8%
u 913224
8.7%
I 911929
8.7%
o 95408
 
0.9%
r 90050
 
0.9%
Other values (13) 702231
 
6.7%

Title
Categorical

Imbalance 

Distinct5
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size7.6 MiB
Mr
933555 
Mrs
 
45850
Ms
 
13269
Miss
 
6614
Dr
 
810

Length

Max length4
Median length2
Mean length2.0590722
Min length2

Characters and Unicode

Total characters2059274
Distinct characters5
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowMr
2nd rowMr
3rd rowMr
4th rowMr
5th rowMr

Common Values

ValueCountFrequency (%)
Mr 933555
93.3%
Mrs 45850
 
4.6%
Ms 13269
 
1.3%
Miss 6614
 
0.7%
Dr 810
 
0.1%

Length

2025-06-17T18:30:54.767896image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-06-17T18:30:54.822873image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
ValueCountFrequency (%)
mr 933555
93.3%
mrs 45850
 
4.6%
ms 13269
 
1.3%
miss 6614
 
0.7%
dr 810
 
0.1%

Most occurring characters

ValueCountFrequency (%)
M 999288
48.5%
r 980215
47.6%
s 72347
 
3.5%
i 6614
 
0.3%
D 810
 
< 0.1%

Most occurring categories

ValueCountFrequency (%)
(unknown) 2059274
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
M 999288
48.5%
r 980215
47.6%
s 72347
 
3.5%
i 6614
 
0.3%
D 810
 
< 0.1%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 2059274
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
M 999288
48.5%
r 980215
47.6%
s 72347
 
3.5%
i 6614
 
0.3%
D 810
 
< 0.1%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 2059274
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
M 999288
48.5%
r 980215
47.6%
s 72347
 
3.5%
i 6614
 
0.3%
D 810
 
< 0.1%

Language
Categorical

Constant 

Distinct1
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size7.6 MiB
English
1000098 

Length

Max length7
Median length7
Mean length7
Min length7

Characters and Unicode

Total characters7000686
Distinct characters7
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowEnglish
2nd rowEnglish
3rd rowEnglish
4th rowEnglish
5th rowEnglish

Common Values

ValueCountFrequency (%)
English 1000098
100.0%

Length

2025-06-17T18:30:54.885511image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-06-17T18:30:54.925015image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
ValueCountFrequency (%)
english 1000098
100.0%

Most occurring characters

ValueCountFrequency (%)
E 1000098
14.3%
n 1000098
14.3%
g 1000098
14.3%
l 1000098
14.3%
i 1000098
14.3%
s 1000098
14.3%
h 1000098
14.3%

Most occurring categories

ValueCountFrequency (%)
(unknown) 7000686
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
E 1000098
14.3%
n 1000098
14.3%
g 1000098
14.3%
l 1000098
14.3%
i 1000098
14.3%
s 1000098
14.3%
h 1000098
14.3%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 7000686
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
E 1000098
14.3%
n 1000098
14.3%
g 1000098
14.3%
l 1000098
14.3%
i 1000098
14.3%
s 1000098
14.3%
h 1000098
14.3%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 7000686
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
E 1000098
14.3%
n 1000098
14.3%
g 1000098
14.3%
l 1000098
14.3%
i 1000098
14.3%
s 1000098
14.3%
h 1000098
14.3%

Bank
Categorical

High correlation  Missing 

Distinct11
Distinct (%)< 0.1%
Missing145961
Missing (%)14.6%
Memory size7.6 MiB
First National Bank
260811 
ABSA Bank
204954 
Standard Bank
181715 
Nedbank
132003 
Capitec Bank
58155 
Other values (6)
 
16499

Length

Max length22
Median length19
Mean length12.916798
Min length7

Characters and Unicode

Total characters11032715
Distinct characters30
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowFirst National Bank
2nd rowFirst National Bank
3rd rowFirst National Bank
4th rowFirst National Bank
5th rowFirst National Bank

Common Values

ValueCountFrequency (%)
First National Bank 260811
26.1%
ABSA Bank 204954
20.5%
Standard Bank 181715
18.2%
Nedbank 132003
13.2%
Capitec Bank 58155
 
5.8%
RMB Private Bank 12576
 
1.3%
Ithala Bank 1730
 
0.2%
Investec Bank 732
 
0.1%
Old Mutual 688
 
0.1%
FirstRand Bank 638
 
0.1%
(Missing) 145961
14.6%

Length

2025-06-17T18:30:54.982245image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
bank 721446
39.0%
first 260811
 
14.1%
national 260811
 
14.1%
absa 204954
 
11.1%
standard 181715
 
9.8%
nedbank 132003
 
7.1%
capitec 58155
 
3.1%
rmb 12576
 
0.7%
private 12576
 
0.7%
ithala 1730
 
0.1%
Other values (6) 3016
 
0.2%

Most occurring characters

ValueCountFrequency (%)
a 1814153
16.4%
n 1297615
11.8%
995656
9.0%
B 938976
 
8.5%
k 853449
 
7.7%
t 777991
 
7.1%
i 593261
 
5.4%
d 496759
 
4.5%
r 455875
 
4.1%
A 409908
 
3.7%
Other values (20) 2399072
21.7%

Most occurring categories

ValueCountFrequency (%)
(unknown) 11032715
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
a 1814153
16.4%
n 1297615
11.8%
995656
9.0%
B 938976
 
8.5%
k 853449
 
7.7%
t 777991
 
7.1%
i 593261
 
5.4%
d 496759
 
4.5%
r 455875
 
4.1%
A 409908
 
3.7%
Other values (20) 2399072
21.7%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 11032715
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
a 1814153
16.4%
n 1297615
11.8%
995656
9.0%
B 938976
 
8.5%
k 853449
 
7.7%
t 777991
 
7.1%
i 593261
 
5.4%
d 496759
 
4.5%
r 455875
 
4.1%
A 409908
 
3.7%
Other values (20) 2399072
21.7%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 11032715
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
a 1814153
16.4%
n 1297615
11.8%
995656
9.0%
B 938976
 
8.5%
k 853449
 
7.7%
t 777991
 
7.1%
i 593261
 
5.4%
d 496759
 
4.5%
r 455875
 
4.1%
A 409908
 
3.7%
Other values (20) 2399072
21.7%

AccountType
Categorical

High correlation  Missing 

Distinct3
Distinct (%)< 0.1%
Missing40232
Missing (%)4.0%
Memory size7.6 MiB
Current account
597938 
Savings account
358207 
Transmission account
 
3721

Length

Max length20
Median length15
Mean length15.019383
Min length15

Characters and Unicode

Total characters14416595
Distinct characters17
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowCurrent account
2nd rowCurrent account
3rd rowCurrent account
4th rowCurrent account
5th rowCurrent account

Common Values

ValueCountFrequency (%)
Current account 597938
59.8%
Savings account 358207
35.8%
Transmission account 3721
 
0.4%
(Missing) 40232
 
4.0%

Length

2025-06-17T18:30:55.054345image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-06-17T18:30:55.102231image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
ValueCountFrequency (%)
account 959866
50.0%
current 597938
31.1%
savings 358207
 
18.7%
transmission 3721
 
0.2%

Most occurring characters

ValueCountFrequency (%)
n 1923453
13.3%
c 1919732
13.3%
t 1557804
10.8%
u 1557804
10.8%
a 1321794
9.2%
r 1199597
8.3%
o 963587
6.7%
959866
6.7%
C 597938
 
4.1%
e 597938
 
4.1%
Other values (7) 1817082
12.6%

Most occurring categories

ValueCountFrequency (%)
(unknown) 14416595
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
n 1923453
13.3%
c 1919732
13.3%
t 1557804
10.8%
u 1557804
10.8%
a 1321794
9.2%
r 1199597
8.3%
o 963587
6.7%
959866
6.7%
C 597938
 
4.1%
e 597938
 
4.1%
Other values (7) 1817082
12.6%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 14416595
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
n 1923453
13.3%
c 1919732
13.3%
t 1557804
10.8%
u 1557804
10.8%
a 1321794
9.2%
r 1199597
8.3%
o 963587
6.7%
959866
6.7%
C 597938
 
4.1%
e 597938
 
4.1%
Other values (7) 1817082
12.6%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 14416595
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
n 1923453
13.3%
c 1919732
13.3%
t 1557804
10.8%
u 1557804
10.8%
a 1321794
9.2%
r 1199597
8.3%
o 963587
6.7%
959866
6.7%
C 597938
 
4.1%
e 597938
 
4.1%
Other values (7) 1817082
12.6%

MaritalStatus
Categorical

Imbalance 

Distinct3
Distinct (%)< 0.1%
Missing8259
Missing (%)0.8%
Memory size7.6 MiB
Not specified
986208 
Single
 
4254
Married
 
1377

Length

Max length13
Median length13
Mean length12.961647
Min length6

Characters and Unicode

Total characters12855867
Distinct characters18
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowNot specified
2nd rowNot specified
3rd rowNot specified
4th rowNot specified
5th rowNot specified

Common Values

ValueCountFrequency (%)
Not specified 986208
98.6%
Single 4254
 
0.4%
Married 1377
 
0.1%
(Missing) 8259
 
0.8%

Length

2025-06-17T18:30:55.167664image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-06-17T18:30:55.215474image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
ValueCountFrequency (%)
not 986208
49.9%
specified 986208
49.9%
single 4254
 
0.2%
married 1377
 
0.1%

Most occurring characters

ValueCountFrequency (%)
e 1978047
15.4%
i 1978047
15.4%
d 987585
7.7%
N 986208
7.7%
o 986208
7.7%
t 986208
7.7%
p 986208
7.7%
s 986208
7.7%
c 986208
7.7%
986208
7.7%
Other values (8) 1008732
7.8%

Most occurring categories

ValueCountFrequency (%)
(unknown) 12855867
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
e 1978047
15.4%
i 1978047
15.4%
d 987585
7.7%
N 986208
7.7%
o 986208
7.7%
t 986208
7.7%
p 986208
7.7%
s 986208
7.7%
c 986208
7.7%
986208
7.7%
Other values (8) 1008732
7.8%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 12855867
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
e 1978047
15.4%
i 1978047
15.4%
d 987585
7.7%
N 986208
7.7%
o 986208
7.7%
t 986208
7.7%
p 986208
7.7%
s 986208
7.7%
c 986208
7.7%
986208
7.7%
Other values (8) 1008732
7.8%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 12855867
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
e 1978047
15.4%
i 1978047
15.4%
d 987585
7.7%
N 986208
7.7%
o 986208
7.7%
t 986208
7.7%
p 986208
7.7%
s 986208
7.7%
c 986208
7.7%
986208
7.7%
Other values (8) 1008732
7.8%

Gender
Categorical

Imbalance 

Distinct3
Distinct (%)< 0.1%
Missing9536
Missing (%)1.0%
Memory size7.6 MiB
Not specified
940990 
Male
 
42817
Female
 
6755

Length

Max length13
Median length13
Mean length12.56324
Min length4

Characters and Unicode

Total characters12444668
Distinct characters16
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowNot specified
2nd rowNot specified
3rd rowNot specified
4th rowNot specified
5th rowNot specified

Common Values

ValueCountFrequency (%)
Not specified 940990
94.1%
Male 42817
 
4.3%
Female 6755
 
0.7%
(Missing) 9536
 
1.0%

Length

2025-06-17T18:30:55.273089image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-06-17T18:30:55.316736image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
ValueCountFrequency (%)
not 940990
48.7%
specified 940990
48.7%
male 42817
 
2.2%
female 6755
 
0.3%

Most occurring characters

ValueCountFrequency (%)
e 1938307
15.6%
i 1881980
15.1%
t 940990
7.6%
N 940990
7.6%
940990
7.6%
s 940990
7.6%
p 940990
7.6%
o 940990
7.6%
c 940990
7.6%
f 940990
7.6%
Other values (6) 1096461
8.8%

Most occurring categories

ValueCountFrequency (%)
(unknown) 12444668
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
e 1938307
15.6%
i 1881980
15.1%
t 940990
7.6%
N 940990
7.6%
940990
7.6%
s 940990
7.6%
p 940990
7.6%
o 940990
7.6%
c 940990
7.6%
f 940990
7.6%
Other values (6) 1096461
8.8%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 12444668
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
e 1938307
15.6%
i 1881980
15.1%
t 940990
7.6%
N 940990
7.6%
940990
7.6%
s 940990
7.6%
p 940990
7.6%
o 940990
7.6%
c 940990
7.6%
f 940990
7.6%
Other values (6) 1096461
8.8%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 12444668
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
e 1938307
15.6%
i 1881980
15.1%
t 940990
7.6%
N 940990
7.6%
940990
7.6%
s 940990
7.6%
p 940990
7.6%
o 940990
7.6%
c 940990
7.6%
f 940990
7.6%
Other values (6) 1096461
8.8%

Country
Categorical

Constant 

Distinct1
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size7.6 MiB
South Africa
1000098 

Length

Max length12
Median length12
Mean length12
Min length12

Characters and Unicode

Total characters12001176
Distinct characters12
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowSouth Africa
2nd rowSouth Africa
3rd rowSouth Africa
4th rowSouth Africa
5th rowSouth Africa

Common Values

ValueCountFrequency (%)
South Africa 1000098
100.0%

Length

2025-06-17T18:30:55.374007image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-06-17T18:30:55.412920image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
ValueCountFrequency (%)
south 1000098
50.0%
africa 1000098
50.0%

Most occurring characters

ValueCountFrequency (%)
S 1000098
8.3%
o 1000098
8.3%
u 1000098
8.3%
t 1000098
8.3%
h 1000098
8.3%
1000098
8.3%
A 1000098
8.3%
f 1000098
8.3%
r 1000098
8.3%
i 1000098
8.3%
Other values (2) 2000196
16.7%

Most occurring categories

ValueCountFrequency (%)
(unknown) 12001176
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
S 1000098
8.3%
o 1000098
8.3%
u 1000098
8.3%
t 1000098
8.3%
h 1000098
8.3%
1000098
8.3%
A 1000098
8.3%
f 1000098
8.3%
r 1000098
8.3%
i 1000098
8.3%
Other values (2) 2000196
16.7%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 12001176
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
S 1000098
8.3%
o 1000098
8.3%
u 1000098
8.3%
t 1000098
8.3%
h 1000098
8.3%
1000098
8.3%
A 1000098
8.3%
f 1000098
8.3%
r 1000098
8.3%
i 1000098
8.3%
Other values (2) 2000196
16.7%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 12001176
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
S 1000098
8.3%
o 1000098
8.3%
u 1000098
8.3%
t 1000098
8.3%
h 1000098
8.3%
1000098
8.3%
A 1000098
8.3%
f 1000098
8.3%
r 1000098
8.3%
i 1000098
8.3%
Other values (2) 2000196
16.7%

Province
Categorical

High correlation 

Distinct9
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size7.6 MiB
Gauteng
393865 
Western Cape
170796 
KwaZulu-Natal
169781 
North West
143287 
Mpumalanga
52718 
Other values (4)
69651 

Length

Max length13
Median length12
Mean length9.6746759
Min length7

Characters and Unicode

Total characters9675624
Distinct characters28
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowGauteng
2nd rowGauteng
3rd rowGauteng
4th rowGauteng
5th rowGauteng

Common Values

ValueCountFrequency (%)
Gauteng 393865
39.4%
Western Cape 170796
17.1%
KwaZulu-Natal 169781
17.0%
North West 143287
 
14.3%
Mpumalanga 52718
 
5.3%
Eastern Cape 30336
 
3.0%
Limpopo 24836
 
2.5%
Free State 8099
 
0.8%
Northern Cape 6380
 
0.6%

Length

2025-06-17T18:30:55.462315image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-06-17T18:30:55.528761image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
ValueCountFrequency (%)
gauteng 393865
29.0%
cape 207512
15.3%
western 170796
12.6%
kwazulu-natal 169781
12.5%
north 143287
 
10.5%
west 143287
 
10.5%
mpumalanga 52718
 
3.9%
eastern 30336
 
2.2%
limpopo 24836
 
1.8%
free 8099
 
0.6%
Other values (2) 14479
 
1.1%

Most occurring characters

ValueCountFrequency (%)
a 1307309
13.5%
e 1147269
11.9%
t 1073930
 
11.1%
u 786145
 
8.1%
n 654095
 
6.8%
g 446583
 
4.6%
G 393865
 
4.1%
l 392280
 
4.1%
r 365278
 
3.8%
358898
 
3.7%
Other values (18) 2749972
28.4%

Most occurring categories

ValueCountFrequency (%)
(unknown) 9675624
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
a 1307309
13.5%
e 1147269
11.9%
t 1073930
 
11.1%
u 786145
 
8.1%
n 654095
 
6.8%
g 446583
 
4.6%
G 393865
 
4.1%
l 392280
 
4.1%
r 365278
 
3.8%
358898
 
3.7%
Other values (18) 2749972
28.4%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 9675624
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
a 1307309
13.5%
e 1147269
11.9%
t 1073930
 
11.1%
u 786145
 
8.1%
n 654095
 
6.8%
g 446583
 
4.6%
G 393865
 
4.1%
l 392280
 
4.1%
r 365278
 
3.8%
358898
 
3.7%
Other values (18) 2749972
28.4%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 9675624
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
a 1307309
13.5%
e 1147269
11.9%
t 1073930
 
11.1%
u 786145
 
8.1%
n 654095
 
6.8%
g 446583
 
4.6%
G 393865
 
4.1%
l 392280
 
4.1%
r 365278
 
3.8%
358898
 
3.7%
Other values (18) 2749972
28.4%

PostalCode
Real number (ℝ)

High correlation 

Distinct888
Distinct (%)0.1%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean3020.6009
Minimum1
Maximum9870
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size7.6 MiB
2025-06-17T18:30:55.631741image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

Quantile statistics

Minimum1
5-th percentile122
Q1827
median2000
Q34180
95-th percentile7800
Maximum9870
Range9869
Interquartile range (IQR)3353

Descriptive statistics

Standard deviation2649.8544
Coefficient of variation (CV)0.87726069
Kurtosis-0.6360581
Mean3020.6009
Median Absolute Deviation (MAD)1698
Skewness0.79947163
Sum3.0208969 × 109
Variance7021728.4
MonotonicityNot monotonic
2025-06-17T18:30:55.725539image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
2000 133498
 
13.3%
122 49171
 
4.9%
7784 28585
 
2.9%
299 25546
 
2.6%
7405 18518
 
1.9%
458 13775
 
1.4%
8000 11794
 
1.2%
2196 11048
 
1.1%
470 10226
 
1.0%
7100 10161
 
1.0%
Other values (878) 687776
68.8%
ValueCountFrequency (%)
1 5341
0.5%
2 1488
 
0.1%
4 77
 
< 0.1%
5 400
 
< 0.1%
6 440
 
< 0.1%
7 356
 
< 0.1%
8 1279
 
0.1%
17 160
 
< 0.1%
21 415
 
< 0.1%
22 605
 
0.1%
ValueCountFrequency (%)
9870 220
 
< 0.1%
9869 1415
0.1%
9868 100
 
< 0.1%
9830 56
 
< 0.1%
9781 643
0.1%
9762 212
 
< 0.1%
9756 132
 
< 0.1%
9752 120
 
< 0.1%
9750 400
 
< 0.1%
9745 45
 
< 0.1%

MainCrestaZone
Categorical

High correlation 

Distinct16
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size7.6 MiB
Transvaal (all except Pretoria)
296187 
Johannesburg
176020 
Transvaal (Pretoria)
100331 
Cape Province (Cape Town)
95936 
Natal
88266 
Other values (11)
243358 

Length

Max length43
Median length31
Mean length21.486147
Min length5

Characters and Unicode

Total characters21488253
Distinct characters45
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowRand East
2nd rowRand East
3rd rowRand East
4th rowRand East
5th rowRand East

Common Values

ValueCountFrequency (%)
Transvaal (all except Pretoria) 296187
29.6%
Johannesburg 176020
17.6%
Transvaal (Pretoria) 100331
 
10.0%
Cape Province (Cape Town) 95936
 
9.6%
Natal 88266
 
8.8%
Natal (Durban) 82859
 
8.3%
Karoo 1 (Northeast of Cape Town) 52732
 
5.3%
Rand East 42168
 
4.2%
Tembu 2, Cape Mid 2, Cape Mid West, Tembu 1 20191
 
2.0%
Cape Province (East and North of Cape Town) 19391
 
1.9%
Other values (6) 26017
 
2.6%

Length

2025-06-17T18:30:55.822291image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
transvaal 396518
13.1%
pretoria 396518
13.1%
cape 332884
11.0%
except 296187
9.8%
all 296187
9.8%
johannesburg 176020
 
5.8%
natal 171125
 
5.6%
town 168059
 
5.5%
province 122028
 
4.0%
durban 82859
 
2.7%
Other values (21) 592579
19.6%

Most occurring characters

ValueCountFrequency (%)
a 3075922
14.3%
2030866
 
9.5%
e 1769922
 
8.2%
r 1713396
 
8.0%
n 1202143
 
5.6%
l 1164808
 
5.4%
o 1134075
 
5.3%
t 1100276
 
5.1%
s 719414
 
3.3%
( 647436
 
3.0%
Other values (35) 6929995
32.3%

Most occurring categories

ValueCountFrequency (%)
(unknown) 21488253
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
a 3075922
14.3%
2030866
 
9.5%
e 1769922
 
8.2%
r 1713396
 
8.0%
n 1202143
 
5.6%
l 1164808
 
5.4%
o 1134075
 
5.3%
t 1100276
 
5.1%
s 719414
 
3.3%
( 647436
 
3.0%
Other values (35) 6929995
32.3%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 21488253
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
a 3075922
14.3%
2030866
 
9.5%
e 1769922
 
8.2%
r 1713396
 
8.0%
n 1202143
 
5.6%
l 1164808
 
5.4%
o 1134075
 
5.3%
t 1100276
 
5.1%
s 719414
 
3.3%
( 647436
 
3.0%
Other values (35) 6929995
32.3%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 21488253
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
a 3075922
14.3%
2030866
 
9.5%
e 1769922
 
8.2%
r 1713396
 
8.0%
n 1202143
 
5.6%
l 1164808
 
5.4%
o 1134075
 
5.3%
t 1100276
 
5.1%
s 719414
 
3.3%
( 647436
 
3.0%
Other values (35) 6929995
32.3%

SubCrestaZone
Categorical

High correlation 

Distinct45
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size7.6 MiB
Johannesburg
176020 
Pretoria
100331 
Cape Town
95936 
Durban
82859 
Transvaal North
75141 
Other values (40)
469811 

Length

Max length20
Median length17
Mean length11.570149
Min length5

Characters and Unicode

Total characters11571283
Distinct characters44
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowRand East
2nd rowRand East
3rd rowRand East
4th rowRand East
5th rowRand East

Common Values

ValueCountFrequency (%)
Johannesburg 176020
17.6%
Pretoria 100331
10.0%
Cape Town 95936
9.6%
Durban 82859
 
8.3%
Transvaal North 75141
 
7.5%
Transvaal North West 72558
 
7.3%
Northeast of CT 51386
 
5.1%
Transvaal East 45729
 
4.6%
Transvaal South 45571
 
4.6%
Rand East 42168
 
4.2%
Other values (35) 212399
21.2%

Length

2025-06-17T18:30:55.912806image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
transvaal 253447
14.2%
north 198031
11.1%
johannesburg 176020
 
9.9%
east 117229
 
6.6%
west 110714
 
6.2%
cape 105095
 
5.9%
pretoria 100331
 
5.6%
town 95936
 
5.4%
durban 82859
 
4.7%
south 72502
 
4.1%
Other values (29) 467784
26.3%

Most occurring characters

ValueCountFrequency (%)
a 1622753
14.0%
r 978124
 
8.5%
n 900172
 
7.8%
o 840123
 
7.3%
t 789786
 
6.8%
s 783786
 
6.8%
779850
 
6.7%
e 594775
 
5.1%
h 524645
 
4.5%
T 413347
 
3.6%
Other values (34) 3343922
28.9%

Most occurring categories

ValueCountFrequency (%)
(unknown) 11571283
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
a 1622753
14.0%
r 978124
 
8.5%
n 900172
 
7.8%
o 840123
 
7.3%
t 789786
 
6.8%
s 783786
 
6.8%
779850
 
6.7%
e 594775
 
5.1%
h 524645
 
4.5%
T 413347
 
3.6%
Other values (34) 3343922
28.9%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 11571283
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
a 1622753
14.0%
r 978124
 
8.5%
n 900172
 
7.8%
o 840123
 
7.3%
t 789786
 
6.8%
s 783786
 
6.8%
779850
 
6.7%
e 594775
 
5.1%
h 524645
 
4.5%
T 413347
 
3.6%
Other values (34) 3343922
28.9%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 11571283
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
a 1622753
14.0%
r 978124
 
8.5%
n 900172
 
7.8%
o 840123
 
7.3%
t 789786
 
6.8%
s 783786
 
6.8%
779850
 
6.7%
e 594775
 
5.1%
h 524645
 
4.5%
T 413347
 
3.6%
Other values (34) 3343922
28.9%

ItemType
Categorical

Constant 

Distinct1
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size7.6 MiB
Mobility - Motor
1000098 

Length

Max length16
Median length16
Mean length16
Min length16

Characters and Unicode

Total characters16001568
Distinct characters10
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowMobility - Motor
2nd rowMobility - Motor
3rd rowMobility - Motor
4th rowMobility - Motor
5th rowMobility - Motor

Common Values

ValueCountFrequency (%)
Mobility - Motor 1000098
100.0%

Length

2025-06-17T18:30:55.986379image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-06-17T18:30:56.025308image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
ValueCountFrequency (%)
mobility 1000098
33.3%
1000098
33.3%
motor 1000098
33.3%

Most occurring characters

ValueCountFrequency (%)
o 3000294
18.8%
M 2000196
12.5%
i 2000196
12.5%
t 2000196
12.5%
2000196
12.5%
b 1000098
 
6.2%
l 1000098
 
6.2%
y 1000098
 
6.2%
- 1000098
 
6.2%
r 1000098
 
6.2%

Most occurring categories

ValueCountFrequency (%)
(unknown) 16001568
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
o 3000294
18.8%
M 2000196
12.5%
i 2000196
12.5%
t 2000196
12.5%
2000196
12.5%
b 1000098
 
6.2%
l 1000098
 
6.2%
y 1000098
 
6.2%
- 1000098
 
6.2%
r 1000098
 
6.2%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 16001568
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
o 3000294
18.8%
M 2000196
12.5%
i 2000196
12.5%
t 2000196
12.5%
2000196
12.5%
b 1000098
 
6.2%
l 1000098
 
6.2%
y 1000098
 
6.2%
- 1000098
 
6.2%
r 1000098
 
6.2%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 16001568
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
o 3000294
18.8%
M 2000196
12.5%
i 2000196
12.5%
t 2000196
12.5%
2000196
12.5%
b 1000098
 
6.2%
l 1000098
 
6.2%
y 1000098
 
6.2%
- 1000098
 
6.2%
r 1000098
 
6.2%

mmcode
Real number (ℝ)

High correlation 

Distinct427
Distinct (%)< 0.1%
Missing552
Missing (%)0.1%
Infinite0
Infinite (%)0.0%
Mean54877704
Minimum4041200
Maximum65065350
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size7.6 MiB
2025-06-17T18:30:56.083797image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

Quantile statistics

Minimum4041200
5-th percentile11511100
Q160056925
median60058415
Q360058418
95-th percentile60058419
Maximum65065350
Range61024150
Interquartile range (IQR)1493

Descriptive statistics

Standard deviation13603805
Coefficient of variation (CV)0.24789312
Kurtosis5.6156328
Mean54877704
Median Absolute Deviation (MAD)8
Skewness-2.6092351
Sum5.485279 × 1013
Variance1.8506352 × 1014
MonotonicityNot monotonic
2025-06-17T18:30:56.171571image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
60058419 186087
18.6%
60058418 165845
16.6%
60058415 137242
13.7%
60058407 99444
9.9%
60056925 79525
 
8.0%
60056987 40960
 
4.1%
60058400 28773
 
2.9%
11510120 16821
 
1.7%
7512100 11265
 
1.1%
22840150 11056
 
1.1%
Other values (417) 222528
22.3%
ValueCountFrequency (%)
4041200 1
 
< 0.1%
4041550 1
 
< 0.1%
4041640 1
 
< 0.1%
4042080 1005
0.1%
4042120 804
0.1%
4042130 552
0.1%
4042141 615
0.1%
4042151 1116
0.1%
4042281 785
0.1%
4042320 96
 
< 0.1%
ValueCountFrequency (%)
65065350 108
< 0.1%
65030720 99
< 0.1%
65030100 109
< 0.1%
64092300 81
 
< 0.1%
64090740 50
 
< 0.1%
64088650 80
 
< 0.1%
64088570 206
< 0.1%
64088515 160
< 0.1%
64088370 1
 
< 0.1%
64088260 142
< 0.1%

VehicleType
Categorical

High correlation  Imbalance 

Distinct5
Distinct (%)< 0.1%
Missing552
Missing (%)0.1%
Memory size7.6 MiB
Passenger Vehicle
933598 
Medium Commercial
 
53985
Heavy Commercial
 
7401
Light Commercial
 
3897
Bus
 
665

Length

Max length17
Median length17
Mean length16.979383
Min length3

Characters and Unicode

Total characters16971674
Distinct characters25
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowPassenger Vehicle
2nd rowPassenger Vehicle
3rd rowPassenger Vehicle
4th rowPassenger Vehicle
5th rowPassenger Vehicle

Common Values

ValueCountFrequency (%)
Passenger Vehicle 933598
93.4%
Medium Commercial 53985
 
5.4%
Heavy Commercial 7401
 
0.7%
Light Commercial 3897
 
0.4%
Bus 665
 
0.1%
(Missing) 552
 
0.1%

Length

2025-06-17T18:30:56.252378image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-06-17T18:30:56.305488image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
ValueCountFrequency (%)
passenger 933598
46.7%
vehicle 933598
46.7%
commercial 65283
 
3.3%
medium 53985
 
2.7%
heavy 7401
 
0.4%
light 3897
 
0.2%
bus 665
 
< 0.1%

Most occurring characters

ValueCountFrequency (%)
e 3861061
22.8%
s 1867861
11.0%
i 1056763
 
6.2%
a 1006282
 
5.9%
998881
 
5.9%
c 998881
 
5.9%
l 998881
 
5.9%
r 998881
 
5.9%
g 937495
 
5.5%
h 937495
 
5.5%
Other values (15) 3309193
19.5%

Most occurring categories

ValueCountFrequency (%)
(unknown) 16971674
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
e 3861061
22.8%
s 1867861
11.0%
i 1056763
 
6.2%
a 1006282
 
5.9%
998881
 
5.9%
c 998881
 
5.9%
l 998881
 
5.9%
r 998881
 
5.9%
g 937495
 
5.5%
h 937495
 
5.5%
Other values (15) 3309193
19.5%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 16971674
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
e 3861061
22.8%
s 1867861
11.0%
i 1056763
 
6.2%
a 1006282
 
5.9%
998881
 
5.9%
c 998881
 
5.9%
l 998881
 
5.9%
r 998881
 
5.9%
g 937495
 
5.5%
h 937495
 
5.5%
Other values (15) 3309193
19.5%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 16971674
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
e 3861061
22.8%
s 1867861
11.0%
i 1056763
 
6.2%
a 1006282
 
5.9%
998881
 
5.9%
c 998881
 
5.9%
l 998881
 
5.9%
r 998881
 
5.9%
g 937495
 
5.5%
h 937495
 
5.5%
Other values (15) 3309193
19.5%

RegistrationYear
Real number (ℝ)

High correlation 

Distinct25
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean2010.2254
Minimum1987
Maximum2015
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size7.6 MiB
2025-06-17T18:30:56.368079image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

Quantile statistics

Minimum1987
5-th percentile2005
Q12008
median2011
Q32013
95-th percentile2014
Maximum2015
Range28
Interquartile range (IQR)5

Descriptive statistics

Standard deviation3.2613915
Coefficient of variation (CV)0.0016224009
Kurtosis0.60808446
Mean2010.2254
Median Absolute Deviation (MAD)2
Skewness-0.79448656
Sum2.0104224 × 109
Variance10.636674
MonotonicityNot monotonic
2025-06-17T18:30:56.437195image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram with fixed size bins (bins=25)
ValueCountFrequency (%)
2014 155889
15.6%
2012 130884
13.1%
2013 117064
11.7%
2008 106008
10.6%
2010 95579
9.6%
2011 88765
8.9%
2007 82514
8.3%
2009 72168
7.2%
2006 45111
 
4.5%
2005 30901
 
3.1%
Other values (15) 75215
7.5%
ValueCountFrequency (%)
1987 3
 
< 0.1%
1988 1
 
< 0.1%
1992 1
 
< 0.1%
1994 52
 
< 0.1%
1995 446
 
< 0.1%
1996 867
0.1%
1997 1045
0.1%
1998 1465
0.1%
1999 1862
0.2%
2000 1740
0.2%
ValueCountFrequency (%)
2015 27589
 
2.8%
2014 155889
15.6%
2013 117064
11.7%
2012 130884
13.1%
2011 88765
8.9%
2010 95579
9.6%
2009 72168
7.2%
2008 106008
10.6%
2007 82514
8.3%
2006 45111
 
4.5%

make
Categorical

High correlation  Imbalance 

Distinct46
Distinct (%)< 0.1%
Missing552
Missing (%)0.1%
Memory size7.6 MiB
TOYOTA
813280 
MERCEDES-BENZ
 
41940
CMC
 
21624
VOLKSWAGEN
 
20929
C.A.M
 
16171
Other values (41)
85602 

Length

Max length35
Median length6
Mean length6.8664734
Min length3

Characters and Unicode

Total characters6863356
Distinct characters29
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique1 ?
Unique (%)< 0.1%

Sample

1st rowMERCEDES-BENZ
2nd rowMERCEDES-BENZ
3rd rowMERCEDES-BENZ
4th rowMERCEDES-BENZ
5th rowMERCEDES-BENZ

Common Values

ValueCountFrequency (%)
TOYOTA 813280
81.3%
MERCEDES-BENZ 41940
 
4.2%
CMC 21624
 
2.2%
VOLKSWAGEN 20929
 
2.1%
C.A.M 16171
 
1.6%
GOLDEN JOURNEY 14462
 
1.4%
NISSAN/DATSUN 10997
 
1.1%
JINBEI 10374
 
1.0%
IVECO 8430
 
0.8%
AUDI 7407
 
0.7%
Other values (36) 33932
 
3.4%

Length

2025-06-17T18:30:56.514231image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
toyota 814446
80.3%
mercedes-benz 45071
 
4.4%
cmc 21624
 
2.1%
volkswagen 20929
 
2.1%
c.a.m 16171
 
1.6%
golden 14462
 
1.4%
journey 14462
 
1.4%
nissan/datsun 10997
 
1.1%
jinbei 10434
 
1.0%
iveco 8430
 
0.8%
Other values (33) 36982
 
3.6%

Most occurring characters

ValueCountFrequency (%)
O 1699378
24.8%
T 1647668
24.0%
A 896572
13.1%
Y 831979
12.1%
413784
 
6.0%
E 254722
 
3.7%
N 157922
 
2.3%
C 115881
 
1.7%
S 113070
 
1.6%
M 91422
 
1.3%
Other values (19) 640958
 
9.3%

Most occurring categories

ValueCountFrequency (%)
(unknown) 6863356
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
O 1699378
24.8%
T 1647668
24.0%
A 896572
13.1%
Y 831979
12.1%
413784
 
6.0%
E 254722
 
3.7%
N 157922
 
2.3%
C 115881
 
1.7%
S 113070
 
1.6%
M 91422
 
1.3%
Other values (19) 640958
 
9.3%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 6863356
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
O 1699378
24.8%
T 1647668
24.0%
A 896572
13.1%
Y 831979
12.1%
413784
 
6.0%
E 254722
 
3.7%
N 157922
 
2.3%
C 115881
 
1.7%
S 113070
 
1.6%
M 91422
 
1.3%
Other values (19) 640958
 
9.3%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 6863356
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
O 1699378
24.8%
T 1647668
24.0%
A 896572
13.1%
Y 831979
12.1%
413784
 
6.0%
E 254722
 
3.7%
N 157922
 
2.3%
C 115881
 
1.7%
S 113070
 
1.6%
M 91422
 
1.3%
Other values (19) 640958
 
9.3%

Model
Text

Distinct411
Distinct (%)< 0.1%
Missing552
Missing (%)0.1%
Memory size7.6 MiB
2025-06-17T18:30:56.776600image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

Length

Max length41
Median length39
Mean length23.211208
Min length4

Characters and Unicode

Total characters23200670
Distinct characters58
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique57 ?
Unique (%)< 0.1%

Sample

1st rowE 240
2nd rowE 240
3rd rowE 240
4th rowE 240
5th rowE 240
ValueCountFrequency (%)
quantum 637134
15.9%
sesfikile 600833
15.0%
2.7 499411
12.5%
16s 289064
 
7.2%
15s 178421
 
4.5%
2.5 151678
 
3.8%
d-4d 140358
 
3.5%
14s 137242
 
3.4%
hiace 121354
 
3.0%
16 99332
 
2.5%
Other values (492) 1152240
28.8%
2025-06-17T18:30:57.126776image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

Most occurring characters

ValueCountFrequency (%)
3014522
 
13.0%
E 1606483
 
6.9%
S 1533773
 
6.6%
I 1466322
 
6.3%
U 1400219
 
6.0%
A 1188405
 
5.1%
1 877516
 
3.8%
T 845207
 
3.6%
F 798309
 
3.4%
N 798175
 
3.4%
Other values (48) 9671739
41.7%

Most occurring categories

ValueCountFrequency (%)
(unknown) 23200670
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
3014522
 
13.0%
E 1606483
 
6.9%
S 1533773
 
6.6%
I 1466322
 
6.3%
U 1400219
 
6.0%
A 1188405
 
5.1%
1 877516
 
3.8%
T 845207
 
3.6%
F 798309
 
3.4%
N 798175
 
3.4%
Other values (48) 9671739
41.7%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 23200670
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
3014522
 
13.0%
E 1606483
 
6.9%
S 1533773
 
6.6%
I 1466322
 
6.3%
U 1400219
 
6.0%
A 1188405
 
5.1%
1 877516
 
3.8%
T 845207
 
3.6%
F 798309
 
3.4%
N 798175
 
3.4%
Other values (48) 9671739
41.7%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 23200670
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
3014522
 
13.0%
E 1606483
 
6.9%
S 1533773
 
6.6%
I 1466322
 
6.3%
U 1400219
 
6.0%
A 1188405
 
5.1%
1 877516
 
3.8%
T 845207
 
3.6%
F 798309
 
3.4%
N 798175
 
3.4%
Other values (48) 9671739
41.7%

Cylinders
Real number (ℝ)

High correlation 

Distinct7
Distinct (%)< 0.1%
Missing552
Missing (%)0.1%
Infinite0
Infinite (%)0.0%
Mean4.0466422
Minimum0
Maximum10
Zeros338
Zeros (%)< 0.1%
Negative0
Negative (%)0.0%
Memory size7.6 MiB
2025-06-17T18:30:57.273094image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile4
Q14
median4
Q34
95-th percentile4
Maximum10
Range10
Interquartile range (IQR)0

Descriptive statistics

Standard deviation0.29402012
Coefficient of variation (CV)0.0726578
Kurtosis71.285271
Mean4.0466422
Median Absolute Deviation (MAD)0
Skewness5.7046352
Sum4044805
Variance0.086447829
MonotonicityNot monotonic
2025-06-17T18:30:57.328954image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram with fixed size bins (bins=7)
ValueCountFrequency (%)
4 965284
96.5%
5 20947
 
2.1%
6 11982
 
1.2%
8 698
 
0.1%
0 338
 
< 0.1%
3 216
 
< 0.1%
10 81
 
< 0.1%
(Missing) 552
 
0.1%
ValueCountFrequency (%)
0 338
 
< 0.1%
3 216
 
< 0.1%
4 965284
96.5%
5 20947
 
2.1%
6 11982
 
1.2%
8 698
 
0.1%
10 81
 
< 0.1%
ValueCountFrequency (%)
10 81
 
< 0.1%
8 698
 
0.1%
6 11982
 
1.2%
5 20947
 
2.1%
4 965284
96.5%
3 216
 
< 0.1%
0 338
 
< 0.1%

cubiccapacity
Real number (ℝ)

High correlation 

Distinct122
Distinct (%)< 0.1%
Missing552
Missing (%)0.1%
Infinite0
Infinite (%)0.0%
Mean2466.7433
Minimum0
Maximum12880
Zeros3323
Zeros (%)0.3%
Negative0
Negative (%)0.0%
Memory size7.6 MiB
2025-06-17T18:30:57.405901image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile1495
Q12237
median2694
Q32694
95-th percentile2694
Maximum12880
Range12880
Interquartile range (IQR)457

Descriptive statistics

Standard deviation442.80064
Coefficient of variation (CV)0.1795082
Kurtosis102.2898
Mean2466.7433
Median Absolute Deviation (MAD)6
Skewness3.5760249
Sum2.4656234 × 109
Variance196072.41
MonotonicityNot monotonic
2025-06-17T18:30:57.499912image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
2694 497056
49.7%
2237 177976
 
17.8%
2494 140287
 
14.0%
1495 18693
 
1.9%
2148 14722
 
1.5%
1330 12507
 
1.3%
2488 10805
 
1.1%
1298 10185
 
1.0%
2987 10067
 
1.0%
2700 9917
 
1.0%
Other values (112) 97331
 
9.7%
ValueCountFrequency (%)
0 3323
 
0.3%
996 216
 
< 0.1%
1149 99
 
< 0.1%
1197 1
 
< 0.1%
1248 108
 
< 0.1%
1296 2729
 
0.3%
1297 90
 
< 0.1%
1298 10185
1.0%
1323 120
 
< 0.1%
1329 57
 
< 0.1%
ValueCountFrequency (%)
12880 182
 
< 0.1%
11412 216
 
< 0.1%
7961 242
 
< 0.1%
5958 1
 
< 0.1%
5833 80
 
< 0.1%
5675 300
< 0.1%
5328 698
0.1%
4921 81
 
< 0.1%
4300 51
 
< 0.1%
4250 108
 
< 0.1%

kilowatts
Real number (ℝ)

High correlation 

Distinct82
Distinct (%)< 0.1%
Missing552
Missing (%)0.1%
Infinite0
Infinite (%)0.0%
Mean97.207919
Minimum0
Maximum309
Zeros328
Zeros (%)< 0.1%
Negative0
Negative (%)0.0%
Memory size7.6 MiB
2025-06-17T18:30:57.590328image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile75
Q175
median111
Q3111
95-th percentile111
Maximum309
Range309
Interquartile range (IQR)36

Descriptive statistics

Standard deviation19.393256
Coefficient of variation (CV)0.19950284
Kurtosis3.0099924
Mean97.207919
Median Absolute Deviation (MAD)1
Skewness0.24471889
Sum97163787
Variance376.09836
MonotonicityNot monotonic
2025-06-17T18:30:57.683071image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
111 496946
49.7%
75 261777
26.2%
76 67185
 
6.7%
80 19782
 
2.0%
110 18505
 
1.9%
115 13919
 
1.4%
74 13253
 
1.3%
108 11084
 
1.1%
67 9856
 
1.0%
102 7273
 
0.7%
Other values (72) 79966
 
8.0%
ValueCountFrequency (%)
0 328
 
< 0.1%
47 401
 
< 0.1%
50 120
 
< 0.1%
51 216
 
< 0.1%
52 1
 
< 0.1%
55 2918
0.3%
58 97
 
< 0.1%
59 2
 
< 0.1%
60 1754
0.2%
61 207
 
< 0.1%
ValueCountFrequency (%)
309 182
 
< 0.1%
230 81
 
< 0.1%
228 9
 
< 0.1%
224 698
0.1%
200 73
 
< 0.1%
190 9
 
< 0.1%
182 99
 
< 0.1%
180 587
0.1%
176 108
 
< 0.1%
173 1
 
< 0.1%

bodytype
Categorical

High correlation  Imbalance 

Distinct13
Distinct (%)< 0.1%
Missing552
Missing (%)0.1%
Memory size7.6 MiB
B/S
844400 
P/V
 
55034
S/D
 
41868
MPV
 
33842
C/C
 
8861
Other values (8)
 
15541

Length

Max length3
Median length3
Mean length3
Min length3

Characters and Unicode

Total characters2998638
Distinct characters12
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowS/D
2nd rowS/D
3rd rowS/D
4th rowS/D
5th rowS/D

Common Values

ValueCountFrequency (%)
B/S 844400
84.4%
P/V 55034
 
5.5%
S/D 41868
 
4.2%
MPV 33842
 
3.4%
C/C 8861
 
0.9%
H/B 8400
 
0.8%
S/W 3100
 
0.3%
SUV 2049
 
0.2%
S/C 880
 
0.1%
C/P 644
 
0.1%
Other values (3) 468
 
< 0.1%
(Missing) 552
 
0.1%

Length

2025-06-17T18:30:57.763529image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
b/s 844400
84.5%
p/v 55034
 
5.5%
s/d 41868
 
4.2%
mpv 33842
 
3.4%
c/c 8861
 
0.9%
h/b 8400
 
0.8%
s/w 3100
 
0.3%
suv 2049
 
0.2%
s/c 880
 
0.1%
c/p 644
 
0.1%
Other values (3) 468
 
< 0.1%

Most occurring characters

ValueCountFrequency (%)
/ 963439
32.1%
S 892417
29.8%
B 852800
28.4%
V 90925
 
3.0%
P 89520
 
3.0%
D 42120
 
1.4%
M 33842
 
1.1%
C 19810
 
0.7%
H 8400
 
0.3%
W 3100
 
0.1%
Other values (2) 2265
 
0.1%

Most occurring categories

ValueCountFrequency (%)
(unknown) 2998638
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
/ 963439
32.1%
S 892417
29.8%
B 852800
28.4%
V 90925
 
3.0%
P 89520
 
3.0%
D 42120
 
1.4%
M 33842
 
1.1%
C 19810
 
0.7%
H 8400
 
0.3%
W 3100
 
0.1%
Other values (2) 2265
 
0.1%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 2998638
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
/ 963439
32.1%
S 892417
29.8%
B 852800
28.4%
V 90925
 
3.0%
P 89520
 
3.0%
D 42120
 
1.4%
M 33842
 
1.1%
C 19810
 
0.7%
H 8400
 
0.3%
W 3100
 
0.1%
Other values (2) 2265
 
0.1%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 2998638
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
/ 963439
32.1%
S 892417
29.8%
B 852800
28.4%
V 90925
 
3.0%
P 89520
 
3.0%
D 42120
 
1.4%
M 33842
 
1.1%
C 19810
 
0.7%
H 8400
 
0.3%
W 3100
 
0.1%
Other values (2) 2265
 
0.1%

NumberOfDoors
Real number (ℝ)

High correlation 

Distinct6
Distinct (%)< 0.1%
Missing552
Missing (%)0.1%
Infinite0
Infinite (%)0.0%
Mean4.0192497
Minimum0
Maximum6
Zeros1995
Zeros (%)0.2%
Negative0
Negative (%)0.0%
Memory size7.6 MiB
2025-06-17T18:30:57.814807image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile4
Q14
median4
Q34
95-th percentile5
Maximum6
Range6
Interquartile range (IQR)0

Descriptive statistics

Standard deviation0.46831443
Coefficient of variation (CV)0.11651787
Kurtosis18.833823
Mean4.0192497
Median Absolute Deviation (MAD)0
Skewness-2.5313282
Sum4017425
Variance0.21931841
MonotonicityNot monotonic
2025-06-17T18:30:57.865945image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram with fixed size bins (bins=6)
ValueCountFrequency (%)
4 892838
89.3%
5 76599
 
7.7%
2 26055
 
2.6%
0 1995
 
0.2%
6 1597
 
0.2%
3 462
 
< 0.1%
(Missing) 552
 
0.1%
ValueCountFrequency (%)
0 1995
 
0.2%
2 26055
 
2.6%
3 462
 
< 0.1%
4 892838
89.3%
5 76599
 
7.7%
6 1597
 
0.2%
ValueCountFrequency (%)
6 1597
 
0.2%
5 76599
 
7.7%
4 892838
89.3%
3 462
 
< 0.1%
2 26055
 
2.6%
0 1995
 
0.2%
Distinct160
Distinct (%)< 0.1%
Missing552
Missing (%)0.1%
Memory size7.6 MiB
Minimum1977-10-01 00:00:00
Maximum2014-09-01 00:00:00
Invalid dates0
Invalid dates (%)0.0%
2025-06-17T18:30:57.947246image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:58.046679image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram with fixed size bins (bins=50)

CustomValueEstimate
Real number (ℝ)

High correlation  Missing  Skewed 

Distinct923
Distinct (%)0.4%
Missing779642
Missing (%)78.0%
Infinite0
Infinite (%)0.0%
Mean225531.13
Minimum20000
Maximum26550000
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size7.6 MiB
2025-06-17T18:30:58.139407image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

Quantile statistics

Minimum20000
5-th percentile58300
Q1135000
median220000
Q3280000
95-th percentile360000
Maximum26550000
Range26530000
Interquartile range (IQR)145000

Descriptive statistics

Standard deviation564515.75
Coefficient of variation (CV)2.5030502
Kurtosis1762.3216
Mean225531.13
Median Absolute Deviation (MAD)79600
Skewness40.870518
Sum4.9719691 × 1010
Variance3.1867803 × 1011
MonotonicityNot monotonic
2025-06-17T18:30:58.232241image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
250000 4401
 
0.4%
280000 4398
 
0.4%
140000 4311
 
0.4%
200000 3937
 
0.4%
293300 3646
 
0.4%
256900 3499
 
0.3%
135600 3439
 
0.3%
80000 3416
 
0.3%
241200 2966
 
0.3%
220000 2576
 
0.3%
Other values (913) 183867
 
18.4%
(Missing) 779642
78.0%
ValueCountFrequency (%)
20000 72
 
< 0.1%
23100 88
 
< 0.1%
24000 38
 
< 0.1%
27100 32
 
< 0.1%
30000 234
< 0.1%
32000 117
 
< 0.1%
34000 94
 
< 0.1%
35000 456
< 0.1%
35200 104
 
< 0.1%
36800 20
 
< 0.1%
ValueCountFrequency (%)
26550000 66
 
< 0.1%
19000000 63
 
< 0.1%
715712 198
< 0.1%
691000 70
 
< 0.1%
654000 33
 
< 0.1%
647292 197
< 0.1%
637000 40
 
< 0.1%
626084 72
 
< 0.1%
625000 33
 
< 0.1%
615000 88
< 0.1%

AlarmImmobiliser
Boolean

Imbalance 

Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size976.8 KiB
True
999861 
False
 
237
ValueCountFrequency (%)
True 999861
> 99.9%
False 237
 
< 0.1%
2025-06-17T18:30:58.290457image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size976.8 KiB
False
656617 
True
343481 
ValueCountFrequency (%)
False 656617
65.7%
True 343481
34.3%
2025-06-17T18:30:58.320359image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

CapitalOutstanding
Unsupported

Rejected  Unsupported 

Missing2
Missing (%)< 0.1%
Memory size7.6 MiB

NewVehicle
Categorical

Imbalance  Missing 

Distinct2
Distinct (%)< 0.1%
Missing153295
Missing (%)15.3%
Memory size7.6 MiB
More than 6 months
845223 
Less than 6 months
 
1580

Length

Max length18
Median length18
Mean length18
Min length18

Characters and Unicode

Total characters15242454
Distinct characters13
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowMore than 6 months
2nd rowMore than 6 months
3rd rowMore than 6 months
4th rowMore than 6 months
5th rowMore than 6 months

Common Values

ValueCountFrequency (%)
More than 6 months 845223
84.5%
Less than 6 months 1580
 
0.2%
(Missing) 153295
 
15.3%

Length

2025-06-17T18:30:58.371763image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-06-17T18:30:58.413852image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
ValueCountFrequency (%)
than 846803
25.0%
months 846803
25.0%
6 846803
25.0%
more 845223
25.0%
less 1580
 
< 0.1%

Most occurring characters

ValueCountFrequency (%)
2540409
16.7%
h 1693606
11.1%
n 1693606
11.1%
t 1693606
11.1%
o 1692026
11.1%
s 849963
 
5.6%
a 846803
 
5.6%
e 846803
 
5.6%
6 846803
 
5.6%
m 846803
 
5.6%
Other values (3) 1692026
11.1%

Most occurring categories

ValueCountFrequency (%)
(unknown) 15242454
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
2540409
16.7%
h 1693606
11.1%
n 1693606
11.1%
t 1693606
11.1%
o 1692026
11.1%
s 849963
 
5.6%
a 846803
 
5.6%
e 846803
 
5.6%
6 846803
 
5.6%
m 846803
 
5.6%
Other values (3) 1692026
11.1%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 15242454
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
2540409
16.7%
h 1693606
11.1%
n 1693606
11.1%
t 1693606
11.1%
o 1692026
11.1%
s 849963
 
5.6%
a 846803
 
5.6%
e 846803
 
5.6%
6 846803
 
5.6%
m 846803
 
5.6%
Other values (3) 1692026
11.1%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 15242454
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
2540409
16.7%
h 1693606
11.1%
n 1693606
11.1%
t 1693606
11.1%
o 1692026
11.1%
s 849963
 
5.6%
a 846803
 
5.6%
e 846803
 
5.6%
6 846803
 
5.6%
m 846803
 
5.6%
Other values (3) 1692026
11.1%

WrittenOff
Boolean

High correlation  Imbalance  Missing 

Distinct2
Distinct (%)< 0.1%
Missing641901
Missing (%)64.2%
Memory size1.9 MiB
False
358165 
True
 
32
(Missing)
641901 
ValueCountFrequency (%)
False 358165
35.8%
True 32
 
< 0.1%
(Missing) 641901
64.2%
2025-06-17T18:30:58.444862image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

Rebuilt
Boolean

High correlation  Imbalance  Missing 

Distinct2
Distinct (%)< 0.1%
Missing641901
Missing (%)64.2%
Memory size1.9 MiB
False
358165 
True
 
32
(Missing)
641901 
ValueCountFrequency (%)
False 358165
35.8%
True 32
 
< 0.1%
(Missing) 641901
64.2%
2025-06-17T18:30:58.473502image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

Converted
Boolean

High correlation  Imbalance  Missing 

Distinct2
Distinct (%)< 0.1%
Missing641901
Missing (%)64.2%
Memory size1.9 MiB
False
358110 
True
 
87
(Missing)
641901 
ValueCountFrequency (%)
False 358110
35.8%
True 87
 
< 0.1%
(Missing) 641901
64.2%
2025-06-17T18:30:58.502158image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

CrossBorder
Boolean

Constant  Missing 

Distinct1
Distinct (%)0.1%
Missing999400
Missing (%)99.9%
Memory size1.9 MiB
False
 
698
(Missing)
999400 
ValueCountFrequency (%)
False 698
 
0.1%
(Missing) 999400
99.9%
2025-06-17T18:30:58.530052image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

NumberOfVehiclesInFleet
Unsupported

Missing  Rejected  Unsupported 

Missing1000098
Missing (%)100.0%
Memory size7.6 MiB

SumInsured
Real number (ℝ)

High correlation 

Distinct2186
Distinct (%)0.2%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean604172.73
Minimum0.01
Maximum12636200
Zeros0
Zeros (%)0.0%
Negative0
Negative (%)0.0%
Memory size7.6 MiB
2025-06-17T18:30:58.588584image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

Quantile statistics

Minimum0.01
5-th percentile0.01
Q15000
median7500
Q3250000
95-th percentile5000000
Maximum12636200
Range12636200
Interquartile range (IQR)245000

Descriptive statistics

Standard deviation1508331.8
Coefficient of variation (CV)2.4965242
Kurtosis4.6451688
Mean604172.73
Median Absolute Deviation (MAD)4000
Skewness2.5485649
Sum6.0423194 × 1011
Variance2.2750649 × 1012
MonotonicityNot monotonic
2025-06-17T18:30:58.689313image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
7500 262599
26.3%
0.01 107597
10.8%
5000000 104042
 
10.4%
500000 102921
 
10.3%
5000 102508
 
10.2%
3500 102416
 
10.2%
7000 64837
 
6.5%
100000 23214
 
2.3%
50000 6733
 
0.7%
200000 2150
 
0.2%
Other values (2176) 121081
12.1%
ValueCountFrequency (%)
0.01 107597
10.8%
1000 10
 
< 0.1%
1500 281
 
< 0.1%
3500 102416
 
10.2%
5000 102508
 
10.2%
7000 64837
 
6.5%
7500 262599
26.3%
10000 655
 
0.1%
16300 12
 
< 0.1%
17900 25
 
< 0.1%
ValueCountFrequency (%)
12636200 9
 
< 0.1%
12438200 10
 
< 0.1%
10000000 32
 
< 0.1%
5000000 104042
10.4%
4883300 10
 
< 0.1%
1500000 63
 
< 0.1%
715712 18
 
< 0.1%
689608 6
 
< 0.1%
675000 10
 
< 0.1%
670000 24
 
< 0.1%

TermFrequency
Categorical

High correlation  Imbalance 

Distinct2
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size7.6 MiB
Monthly
999554 
Annual
 
544

Length

Max length7
Median length7
Mean length6.9994561
Min length6

Characters and Unicode

Total characters7000142
Distinct characters10
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowMonthly
2nd rowMonthly
3rd rowMonthly
4th rowMonthly
5th rowMonthly

Common Values

ValueCountFrequency (%)
Monthly 999554
99.9%
Annual 544
 
0.1%

Length

2025-06-17T18:30:58.771917image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-06-17T18:30:58.817945image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
ValueCountFrequency (%)
monthly 999554
99.9%
annual 544
 
0.1%

Most occurring characters

ValueCountFrequency (%)
n 1000642
14.3%
l 1000098
14.3%
o 999554
14.3%
M 999554
14.3%
t 999554
14.3%
h 999554
14.3%
y 999554
14.3%
A 544
 
< 0.1%
u 544
 
< 0.1%
a 544
 
< 0.1%

Most occurring categories

ValueCountFrequency (%)
(unknown) 7000142
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
n 1000642
14.3%
l 1000098
14.3%
o 999554
14.3%
M 999554
14.3%
t 999554
14.3%
h 999554
14.3%
y 999554
14.3%
A 544
 
< 0.1%
u 544
 
< 0.1%
a 544
 
< 0.1%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 7000142
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
n 1000642
14.3%
l 1000098
14.3%
o 999554
14.3%
M 999554
14.3%
t 999554
14.3%
h 999554
14.3%
y 999554
14.3%
A 544
 
< 0.1%
u 544
 
< 0.1%
a 544
 
< 0.1%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 7000142
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
n 1000642
14.3%
l 1000098
14.3%
o 999554
14.3%
M 999554
14.3%
t 999554
14.3%
h 999554
14.3%
y 999554
14.3%
A 544
 
< 0.1%
u 544
 
< 0.1%
a 544
 
< 0.1%

CalculatedPremiumPerTerm
Real number (ℝ)

High correlation  Skewed 

Distinct19869
Distinct (%)2.0%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean117.87569
Minimum0
Maximum74422.168
Zeros7
Zeros (%)< 0.1%
Negative0
Negative (%)0.0%
Memory size7.6 MiB
2025-06-17T18:30:58.881033image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

Quantile statistics

Minimum0
5-th percentile1.4339
Q13.2248
median8.4369
Q390
95-th percentile675.9028
Maximum74422.168
Range74422.168
Interquartile range (IQR)86.7752

Descriptive statistics

Standard deviation399.70172
Coefficient of variation (CV)3.3908749
Kurtosis22210.702
Mean117.87569
Median Absolute Deviation (MAD)7.4572
Skewness122.97458
Sum1.1788724 × 108
Variance159761.47
MonotonicityNot monotonic
2025-06-17T18:30:58.979589image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
25 81499
 
8.1%
85 59987
 
6.0%
90 53581
 
5.4%
50 27508
 
2.8%
18 25188
 
2.5%
105 4812
 
0.5%
110 4363
 
0.4%
5.5109 3924
 
0.4%
4.0413 3646
 
0.4%
1.837 3558
 
0.4%
Other values (19859) 732032
73.2%
ValueCountFrequency (%)
0 7
 
< 0.1%
0.0002 269
< 0.1%
0.0004 227
< 0.1%
0.0005 122
 
< 0.1%
0.0006 334
< 0.1%
0.0007 124
 
< 0.1%
0.0257 22
 
< 0.1%
0.0271 20
 
< 0.1%
0.0273 20
 
< 0.1%
0.0276 12
 
< 0.1%
ValueCountFrequency (%)
74422.1679 9
< 0.1%
73291.8087 10
< 0.1%
27899.6347 10
< 0.1%
3158.3967 9
< 0.1%
3110.4255 10
< 0.1%
3051.8211 7
< 0.1%
2568.9983 10
< 0.1%
2561.8622 12
< 0.1%
2383.4576 7
< 0.1%
2253.0115 12
< 0.1%

ExcessSelected
Categorical

High correlation  Imbalance 

Distinct13
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size7.6 MiB
No excess
791235 
Mobility - Windscreen
97313 
Mobility - Taxi with value more than R100 000 - R5 000
 
76424
Mobility - Taxi with value less than R100 000 - R3 000
 
15249
Mobility - Metered Taxis - R2000
 
6999
Other values (8)
 
12878

Length

Max length62
Median length9
Mean length14.851594
Min length9

Characters and Unicode

Total characters14853049
Distinct characters38
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowMobility - Windscreen
2nd rowMobility - Windscreen
3rd rowMobility - Windscreen
4th rowMobility - Metered Taxis - R2000
5th rowMobility - Metered Taxis - R2000

Common Values

ValueCountFrequency (%)
No excess 791235
79.1%
Mobility - Windscreen 97313
 
9.7%
Mobility - Taxi with value more than R100 000 - R5 000 76424
 
7.6%
Mobility - Taxi with value less than R100 000 - R3 000 15249
 
1.5%
Mobility - Metered Taxis - R2000 6999
 
0.7%
Mobility - Windscreen (Feb2015) 6450
 
0.6%
Mobility - Taxi with value more than R100 000 - R5 000 (April) 3022
 
0.3%
Mobility - Metered Taxis - R5000 1704
 
0.2%
Mobility - Taxi with value more than R100 000 - R10 000 1108
 
0.1%
Mobility - R250 463
 
< 0.1%
Other values (3) 131
 
< 0.1%

Length

2025-06-17T18:30:59.068594image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
no 791235
25.5%
excess 791235
25.5%
313421
 
10.1%
mobility 208863
 
6.7%
000 191658
 
6.2%
windscreen 103763
 
3.3%
with 95855
 
3.1%
taxi 95855
 
3.1%
value 95855
 
3.1%
than 95855
 
3.1%
Other values (18) 323743
10.4%

Most occurring characters

ValueCountFrequency (%)
2107240
14.2%
e 2014341
13.6%
s 1725510
11.6%
o 1080710
 
7.3%
x 895793
 
6.0%
c 895001
 
6.0%
0 800918
 
5.4%
N 791235
 
5.3%
i 725000
 
4.9%
t 409279
 
2.8%
Other values (28) 3408022
22.9%

Most occurring categories

ValueCountFrequency (%)
(unknown) 14853049
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
2107240
14.2%
e 2014341
13.6%
s 1725510
11.6%
o 1080710
 
7.3%
x 895793
 
6.0%
c 895001
 
6.0%
0 800918
 
5.4%
N 791235
 
5.3%
i 725000
 
4.9%
t 409279
 
2.8%
Other values (28) 3408022
22.9%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 14853049
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
2107240
14.2%
e 2014341
13.6%
s 1725510
11.6%
o 1080710
 
7.3%
x 895793
 
6.0%
c 895001
 
6.0%
0 800918
 
5.4%
N 791235
 
5.3%
i 725000
 
4.9%
t 409279
 
2.8%
Other values (28) 3408022
22.9%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 14853049
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
2107240
14.2%
e 2014341
13.6%
s 1725510
11.6%
o 1080710
 
7.3%
x 895793
 
6.0%
c 895001
 
6.0%
0 800918
 
5.4%
N 791235
 
5.3%
i 725000
 
4.9%
t 409279
 
2.8%
Other values (28) 3408022
22.9%

CoverCategory
Categorical

High correlation 

Distinct28
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size7.6 MiB
Passenger Liability
104158 
Third Party
102825 
Keys and Alarms
102428 
Signage and Vehicle Wraps
102416 
Emergency Charges
102416 
Other values (23)
485855 

Length

Max length51
Median length26
Mean length18.254392
Min length7

Characters and Unicode

Total characters18256181
Distinct characters49
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowWindscreen
2nd rowWindscreen
3rd rowWindscreen
4th rowOwn damage
5th rowOwn damage

Common Values

ValueCountFrequency (%)
Passenger Liability 104158
10.4%
Third Party 102825
10.3%
Keys and Alarms 102428
10.2%
Signage and Vehicle Wraps 102416
10.2%
Emergency Charges 102416
10.2%
Cleaning and Removal of Accident Debris 102414
10.2%
Windscreen 97313
9.7%
Own Damage 78981
7.9%
Income Protector 60001
6.0%
Basic Excess Waiver 53755
5.4%
Other values (18) 93391
9.3%

Length

2025-06-17T18:30:59.221481image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
and 307261
 
11.4%
liability 104702
 
3.9%
passenger 104702
 
3.9%
vehicle 104122
 
3.9%
windscreen 103763
 
3.9%
third 102888
 
3.8%
party 102888
 
3.8%
damage 102852
 
3.8%
own 102852
 
3.8%
keys 102428
 
3.8%
Other values (43) 1452587
54.0%

Most occurring characters

ValueCountFrequency (%)
e 2002993
 
11.0%
1769928
 
9.7%
a 1620739
 
8.9%
n 1350058
 
7.4%
i 1222879
 
6.7%
r 1155627
 
6.3%
s 1018388
 
5.6%
c 836848
 
4.6%
g 720955
 
3.9%
d 678865
 
3.7%
Other values (39) 5878901
32.2%

Most occurring categories

ValueCountFrequency (%)
(unknown) 18256181
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
e 2002993
 
11.0%
1769928
 
9.7%
a 1620739
 
8.9%
n 1350058
 
7.4%
i 1222879
 
6.7%
r 1155627
 
6.3%
s 1018388
 
5.6%
c 836848
 
4.6%
g 720955
 
3.9%
d 678865
 
3.7%
Other values (39) 5878901
32.2%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 18256181
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
e 2002993
 
11.0%
1769928
 
9.7%
a 1620739
 
8.9%
n 1350058
 
7.4%
i 1222879
 
6.7%
r 1155627
 
6.3%
s 1018388
 
5.6%
c 836848
 
4.6%
g 720955
 
3.9%
d 678865
 
3.7%
Other values (39) 5878901
32.2%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 18256181
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
e 2002993
 
11.0%
1769928
 
9.7%
a 1620739
 
8.9%
n 1350058
 
7.4%
i 1222879
 
6.7%
r 1155627
 
6.3%
s 1018388
 
5.6%
c 836848
 
4.6%
g 720955
 
3.9%
d 678865
 
3.7%
Other values (39) 5878901
32.2%

CoverType
Categorical

High correlation 

Distinct22
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size7.6 MiB
Own Damage
104183 
Passenger Liability
104158 
Windscreen
103763 
Third Party
102825 
Keys and Alarms
102428 
Other values (17)
482741 

Length

Max length51
Median length25
Mean length18.035985
Min length7

Characters and Unicode

Total characters18037753
Distinct characters42
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowWindscreen
2nd rowWindscreen
3rd rowWindscreen
4th rowOwn Damage
5th rowOwn Damage

Common Values

ValueCountFrequency (%)
Own Damage 104183
10.4%
Passenger Liability 104158
10.4%
Windscreen 103763
10.4%
Third Party 102825
10.3%
Keys and Alarms 102428
10.2%
Signage and Vehicle Wraps 102416
10.2%
Emergency Charges 102416
10.2%
Cleaning and Removal of Accident Debris 102414
10.2%
Income Protector 64813
6.5%
Basic Excess Waiver 57769
5.8%
Other values (12) 52913
5.3%

Length

2025-06-17T18:30:59.300985image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
and 307636
 
11.5%
passenger 104702
 
3.9%
liability 104702
 
3.9%
own 104183
 
3.9%
damage 104183
 
3.9%
windscreen 103763
 
3.9%
third 102888
 
3.8%
party 102888
 
3.8%
keys 102428
 
3.8%
alarms 102428
 
3.8%
Other values (40) 1432931
53.6%

Most occurring characters

ValueCountFrequency (%)
e 1999956
 
11.1%
1672634
 
9.3%
a 1623776
 
9.0%
n 1351610
 
7.5%
i 1221548
 
6.8%
r 1154296
 
6.4%
s 1018388
 
5.6%
c 835142
 
4.6%
g 722286
 
4.0%
d 670310
 
3.7%
Other values (32) 5767807
32.0%

Most occurring categories

ValueCountFrequency (%)
(unknown) 18037753
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
e 1999956
 
11.1%
1672634
 
9.3%
a 1623776
 
9.0%
n 1351610
 
7.5%
i 1221548
 
6.8%
r 1154296
 
6.4%
s 1018388
 
5.6%
c 835142
 
4.6%
g 722286
 
4.0%
d 670310
 
3.7%
Other values (32) 5767807
32.0%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 18037753
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
e 1999956
 
11.1%
1672634
 
9.3%
a 1623776
 
9.0%
n 1351610
 
7.5%
i 1221548
 
6.8%
r 1154296
 
6.4%
s 1018388
 
5.6%
c 835142
 
4.6%
g 722286
 
4.0%
d 670310
 
3.7%
Other values (32) 5767807
32.0%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 18037753
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
e 1999956
 
11.1%
1672634
 
9.3%
a 1623776
 
9.0%
n 1351610
 
7.5%
i 1221548
 
6.8%
r 1154296
 
6.4%
s 1018388
 
5.6%
c 835142
 
4.6%
g 722286
 
4.0%
d 670310
 
3.7%
Other values (32) 5767807
32.0%

CoverGroup
Categorical

High correlation  Imbalance 

Distinct14
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size7.6 MiB
Comprehensive - Taxi
824124 
Income Protector
 
64813
Basic Excess Waiver
 
57769
Accidental Death
 
27321
Credit Protection
 
18070
Other values (9)
 
8001

Length

Max length30
Median length20
Mean length19.512876
Min length7

Characters and Unicode

Total characters19514788
Distinct characters41
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowComprehensive - Taxi
2nd rowComprehensive - Taxi
3rd rowComprehensive - Taxi
4th rowComprehensive - Taxi
5th rowComprehensive - Taxi

Common Values

ValueCountFrequency (%)
Comprehensive - Taxi 824124
82.4%
Income Protector 64813
 
6.5%
Basic Excess Waiver 57769
 
5.8%
Accidental Death 27321
 
2.7%
Credit Protection 18070
 
1.8%
Motor Comprehensive 3941
 
0.4%
Deposit Cover 1299
 
0.1%
Asset Value Preserver 865
 
0.1%
Fire,Theft and Third Party 750
 
0.1%
Standalone passenger liability 544
 
0.1%
Other values (4) 602
 
0.1%

Length

2025-06-17T18:30:59.373339image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram of lengths of the category
ValueCountFrequency (%)
comprehensive 828065
28.7%
824124
28.6%
taxi 824124
28.6%
income 64813
 
2.2%
protector 64813
 
2.2%
basic 57769
 
2.0%
excess 57769
 
2.0%
waiver 57769
 
2.0%
accidental 27321
 
0.9%
death 27321
 
0.9%
Other values (20) 50925
 
1.8%

Most occurring characters

ValueCountFrequency (%)
e 2830616
14.5%
1884715
 
9.7%
i 1836049
 
9.4%
o 1069668
 
5.5%
r 1062507
 
5.4%
s 1006936
 
5.2%
a 1000082
 
5.1%
n 941005
 
4.8%
m 892878
 
4.6%
v 887998
 
4.6%
Other values (31) 6102334
31.3%

Most occurring categories

ValueCountFrequency (%)
(unknown) 19514788
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
e 2830616
14.5%
1884715
 
9.7%
i 1836049
 
9.4%
o 1069668
 
5.5%
r 1062507
 
5.4%
s 1006936
 
5.2%
a 1000082
 
5.1%
n 941005
 
4.8%
m 892878
 
4.6%
v 887998
 
4.6%
Other values (31) 6102334
31.3%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 19514788
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
e 2830616
14.5%
1884715
 
9.7%
i 1836049
 
9.4%
o 1069668
 
5.5%
r 1062507
 
5.4%
s 1006936
 
5.2%
a 1000082
 
5.1%
n 941005
 
4.8%
m 892878
 
4.6%
v 887998
 
4.6%
Other values (31) 6102334
31.3%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 19514788
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
e 2830616
14.5%
1884715
 
9.7%
i 1836049
 
9.4%
o 1069668
 
5.5%
r 1062507
 
5.4%
s 1006936
 
5.2%
a 1000082
 
5.1%
n 941005
 
4.8%
m 892878
 
4.6%
v 887998
 
4.6%
Other values (31) 6102334
31.3%

Section
Categorical

High correlation  Imbalance 

Distinct5
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size7.6 MiB
Motor Comprehensive
828125 
Optional Extended Covers
152530 
Credit Protection
 
18070
Third party or third party, fire and theft only
 
829
Standalone passenger liability
 
544

Length

Max length47
Median length19
Mean length19.755632
Min length17

Characters and Unicode

Total characters19757568
Distinct characters29
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowMotor Comprehensive
2nd rowMotor Comprehensive
3rd rowMotor Comprehensive
4th rowMotor Comprehensive
5th rowMotor Comprehensive

Common Values

ValueCountFrequency (%)
Motor Comprehensive 828125
82.8%
Optional Extended Covers 152530
 
15.3%
Credit Protection 18070
 
1.8%
Third party or third party, fire and theft only 829
 
0.1%
Standalone passenger liability 544
 
0.1%

Length

2025-06-17T18:30:59.441056image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-06-17T18:30:59.493994image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
ValueCountFrequency (%)
motor 828125
38.4%
comprehensive 828125
38.4%
optional 152530
 
7.1%
extended 152530
 
7.1%
covers 152530
 
7.1%
credit 18070
 
0.8%
protection 18070
 
0.8%
third 1658
 
0.1%
party 1658
 
0.1%
or 829
 
< 0.1%
Other values (7) 4948
 
0.2%

Most occurring characters

ValueCountFrequency (%)
e 2981395
15.1%
o 2827777
14.3%
r 1850438
9.4%
t 1192628
 
6.0%
1158975
 
5.9%
n 1154545
 
5.8%
i 1020914
 
5.2%
C 998725
 
5.1%
p 982857
 
5.0%
s 981743
 
5.0%
Other values (19) 4607571
23.3%

Most occurring categories

ValueCountFrequency (%)
(unknown) 19757568
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
e 2981395
15.1%
o 2827777
14.3%
r 1850438
9.4%
t 1192628
 
6.0%
1158975
 
5.9%
n 1154545
 
5.8%
i 1020914
 
5.2%
C 998725
 
5.1%
p 982857
 
5.0%
s 981743
 
5.0%
Other values (19) 4607571
23.3%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 19757568
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
e 2981395
15.1%
o 2827777
14.3%
r 1850438
9.4%
t 1192628
 
6.0%
1158975
 
5.9%
n 1154545
 
5.8%
i 1020914
 
5.2%
C 998725
 
5.1%
p 982857
 
5.0%
s 981743
 
5.0%
Other values (19) 4607571
23.3%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 19757568
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
e 2981395
15.1%
o 2827777
14.3%
r 1850438
9.4%
t 1192628
 
6.0%
1158975
 
5.9%
n 1154545
 
5.8%
i 1020914
 
5.2%
C 998725
 
5.1%
p 982857
 
5.0%
s 981743
 
5.0%
Other values (19) 4607571
23.3%

Product
Categorical

High correlation  Imbalance 

Distinct4
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size7.6 MiB
Mobility Commercial Cover: Monthly
915028 
Mobility Metered Taxis: Monthly
 
79272
Bridge Taxi Finance: Monthly
 
5254
Standalone Passenger Liability
 
544

Length

Max length34
Median length34
Mean length33.728511
Min length28

Characters and Unicode

Total characters33731816
Distinct characters28
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowMobility Metered Taxis: Monthly
2nd rowMobility Metered Taxis: Monthly
3rd rowMobility Metered Taxis: Monthly
4th rowMobility Metered Taxis: Monthly
5th rowMobility Metered Taxis: Monthly

Common Values

ValueCountFrequency (%)
Mobility Commercial Cover: Monthly 915028
91.5%
Mobility Metered Taxis: Monthly 79272
 
7.9%
Bridge Taxi Finance: Monthly 5254
 
0.5%
Standalone Passenger Liability 544
 
0.1%

Length

2025-06-17T18:30:59.571067image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-06-17T18:30:59.622422image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
ValueCountFrequency (%)
monthly 999554
25.0%
mobility 994300
24.9%
commercial 915028
22.9%
cover 915028
22.9%
metered 79272
 
2.0%
taxis 79272
 
2.0%
bridge 5254
 
0.1%
taxi 5254
 
0.1%
finance 5254
 
0.1%
standalone 544
 
< 0.1%
Other values (2) 1088
 
< 0.1%

Most occurring characters

ValueCountFrequency (%)
o 3824454
11.3%
i 3000294
 
8.9%
2999750
 
8.9%
l 2909970
 
8.6%
e 2080012
 
6.2%
t 2074214
 
6.1%
M 2073126
 
6.1%
y 1994398
 
5.9%
r 1915126
 
5.7%
m 1830056
 
5.4%
Other values (18) 9030416
26.8%

Most occurring categories

ValueCountFrequency (%)
(unknown) 33731816
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
o 3824454
11.3%
i 3000294
 
8.9%
2999750
 
8.9%
l 2909970
 
8.6%
e 2080012
 
6.2%
t 2074214
 
6.1%
M 2073126
 
6.1%
y 1994398
 
5.9%
r 1915126
 
5.7%
m 1830056
 
5.4%
Other values (18) 9030416
26.8%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 33731816
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
o 3824454
11.3%
i 3000294
 
8.9%
2999750
 
8.9%
l 2909970
 
8.6%
e 2080012
 
6.2%
t 2074214
 
6.1%
M 2073126
 
6.1%
y 1994398
 
5.9%
r 1915126
 
5.7%
m 1830056
 
5.4%
Other values (18) 9030416
26.8%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 33731816
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
o 3824454
11.3%
i 3000294
 
8.9%
2999750
 
8.9%
l 2909970
 
8.6%
e 2080012
 
6.2%
t 2074214
 
6.1%
M 2073126
 
6.1%
y 1994398
 
5.9%
r 1915126
 
5.7%
m 1830056
 
5.4%
Other values (18) 9030416
26.8%

StatutoryClass
Categorical

Constant 

Distinct1
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size7.6 MiB
Commercial
1000098 

Length

Max length10
Median length10
Mean length10
Min length10

Characters and Unicode

Total characters10000980
Distinct characters9
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowCommercial
2nd rowCommercial
3rd rowCommercial
4th rowCommercial
5th rowCommercial

Common Values

ValueCountFrequency (%)
Commercial 1000098
100.0%

Length

2025-06-17T18:30:59.690042image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-06-17T18:30:59.730805image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
ValueCountFrequency (%)
commercial 1000098
100.0%

Most occurring characters

ValueCountFrequency (%)
m 2000196
20.0%
C 1000098
10.0%
o 1000098
10.0%
e 1000098
10.0%
r 1000098
10.0%
c 1000098
10.0%
i 1000098
10.0%
a 1000098
10.0%
l 1000098
10.0%

Most occurring categories

ValueCountFrequency (%)
(unknown) 10000980
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
m 2000196
20.0%
C 1000098
10.0%
o 1000098
10.0%
e 1000098
10.0%
r 1000098
10.0%
c 1000098
10.0%
i 1000098
10.0%
a 1000098
10.0%
l 1000098
10.0%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 10000980
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
m 2000196
20.0%
C 1000098
10.0%
o 1000098
10.0%
e 1000098
10.0%
r 1000098
10.0%
c 1000098
10.0%
i 1000098
10.0%
a 1000098
10.0%
l 1000098
10.0%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 10000980
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
m 2000196
20.0%
C 1000098
10.0%
o 1000098
10.0%
e 1000098
10.0%
r 1000098
10.0%
c 1000098
10.0%
i 1000098
10.0%
a 1000098
10.0%
l 1000098
10.0%

StatutoryRiskType
Categorical

Constant 

Distinct1
Distinct (%)< 0.1%
Missing0
Missing (%)0.0%
Memory size7.6 MiB
IFRS Constant
1000098 

Length

Max length13
Median length13
Mean length13
Min length13

Characters and Unicode

Total characters13001274
Distinct characters11
Distinct categories1 ?
Distinct scripts1 ?
Distinct blocks1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique0 ?
Unique (%)0.0%

Sample

1st rowIFRS Constant
2nd rowIFRS Constant
3rd rowIFRS Constant
4th rowIFRS Constant
5th rowIFRS Constant

Common Values

ValueCountFrequency (%)
IFRS Constant 1000098
100.0%

Length

2025-06-17T18:30:59.778254image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram of lengths of the category

Common Values (Plot)

2025-06-17T18:30:59.817840image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
ValueCountFrequency (%)
ifrs 1000098
50.0%
constant 1000098
50.0%

Most occurring characters

ValueCountFrequency (%)
t 2000196
15.4%
n 2000196
15.4%
I 1000098
7.7%
R 1000098
7.7%
F 1000098
7.7%
S 1000098
7.7%
1000098
7.7%
o 1000098
7.7%
C 1000098
7.7%
s 1000098
7.7%

Most occurring categories

ValueCountFrequency (%)
(unknown) 13001274
100.0%

Most frequent character per category

(unknown)
ValueCountFrequency (%)
t 2000196
15.4%
n 2000196
15.4%
I 1000098
7.7%
R 1000098
7.7%
F 1000098
7.7%
S 1000098
7.7%
1000098
7.7%
o 1000098
7.7%
C 1000098
7.7%
s 1000098
7.7%

Most occurring scripts

ValueCountFrequency (%)
(unknown) 13001274
100.0%

Most frequent character per script

(unknown)
ValueCountFrequency (%)
t 2000196
15.4%
n 2000196
15.4%
I 1000098
7.7%
R 1000098
7.7%
F 1000098
7.7%
S 1000098
7.7%
1000098
7.7%
o 1000098
7.7%
C 1000098
7.7%
s 1000098
7.7%

Most occurring blocks

ValueCountFrequency (%)
(unknown) 13001274
100.0%

Most frequent character per block

(unknown)
ValueCountFrequency (%)
t 2000196
15.4%
n 2000196
15.4%
I 1000098
7.7%
R 1000098
7.7%
F 1000098
7.7%
S 1000098
7.7%
1000098
7.7%
o 1000098
7.7%
C 1000098
7.7%
s 1000098
7.7%

TotalPremium
Real number (ℝ)

High correlation  Skewed  Zeros 

Distinct38959
Distinct (%)3.9%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean61.905496
Minimum-782.57675
Maximum65282.603
Zeros381634
Zeros (%)38.2%
Negative288
Negative (%)< 0.1%
Memory size7.6 MiB
2025-06-17T18:30:59.877630image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

Quantile statistics

Minimum-782.57675
5-th percentile0
Q10
median2.1783333
Q321.929825
95-th percentile404.87798
Maximum65282.603
Range66065.18
Interquartile range (IQR)21.929825

Descriptive statistics

Standard deviation230.28451
Coefficient of variation (CV)3.7199365
Kurtosis37176.185
Mean61.905496
Median Absolute Deviation (MAD)2.1783333
Skewness138.59646
Sum61911563
Variance53030.957
MonotonicityNot monotonic
2025-06-17T18:30:59.972712image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
0 381634
38.2%
21.92982456 49731
 
5.0%
74.56140351 34382
 
3.4%
78.94736842 30400
 
3.0%
43.85964912 16919
 
1.7%
15.78947368 10939
 
1.1%
92.10526316 3424
 
0.3%
96.49122807 2921
 
0.3%
4.834122807 2443
 
0.2%
1.933684211 2272
 
0.2%
Other values (38949) 465033
46.5%
ValueCountFrequency (%)
-782.5767544 11
< 0.1%
-575.5796491 11
< 0.1%
-350.7014912 11
< 0.1%
-302.9329372 1
 
< 0.1%
-294.7868421 11
< 0.1%
-284.497807 12
< 0.1%
-222.8050255 1
 
< 0.1%
-135.755416 1
 
< 0.1%
-114.1110357 1
 
< 0.1%
-96.49122807 1
 
< 0.1%
ValueCountFrequency (%)
65282.60342 4
 
< 0.1%
64291.06026 1
 
< 0.1%
60143.24992 1
 
< 0.1%
24473.36377 6
< 0.1%
4211.780866 1
 
< 0.1%
2770.523421 4
 
< 0.1%
2728.443421 1
 
< 0.1%
2552.414813 1
 
< 0.1%
2253.507281 10
< 0.1%
1890.948684 6
< 0.1%

TotalClaims
Real number (ℝ)

Skewed  Zeros 

Distinct1615
Distinct (%)0.2%
Missing0
Missing (%)0.0%
Infinite0
Infinite (%)0.0%
Mean64.86119
Minimum-12002.412
Maximum393092.11
Zeros997305
Zeros (%)99.7%
Negative5
Negative (%)< 0.1%
Memory size7.6 MiB
2025-06-17T18:31:00.065522image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

Quantile statistics

Minimum-12002.412
5-th percentile0
Q10
median0
Q30
95-th percentile0
Maximum393092.11
Range405094.52
Interquartile range (IQR)0

Descriptive statistics

Standard deviation2384.0747
Coefficient of variation (CV)36.756567
Kurtosis6791.9262
Mean64.86119
Median Absolute Deviation (MAD)0
Skewness69.933118
Sum64867546
Variance5683812.1
MonotonicityNot monotonic
2025-06-17T18:31:00.162658image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
ValueCountFrequency (%)
0 997305
99.7%
6140.350877 326
 
< 0.1%
750.6491228 101
 
< 0.1%
1300 59
 
< 0.1%
850 51
 
< 0.1%
877.1929825 45
 
< 0.1%
43859.64912 41
 
< 0.1%
1150 31
 
< 0.1%
3070.175439 28
 
< 0.1%
815.7894737 24
 
< 0.1%
Other values (1605) 2087
 
0.2%
ValueCountFrequency (%)
-12002.41228 1
 
< 0.1%
-5690.719298 1
 
< 0.1%
-635.48 1
 
< 0.1%
-256.35 1
 
< 0.1%
-72 1
 
< 0.1%
0 997305
99.7%
139.0438596 2
 
< 0.1%
158.51 1
 
< 0.1%
170.6578947 2
 
< 0.1%
175.4385965 4
 
< 0.1%
ValueCountFrequency (%)
393092.1053 1
< 0.1%
376432.4912 1
< 0.1%
363343.4211 1
< 0.1%
304413.3947 1
< 0.1%
304338.6579 1
< 0.1%
302361.1491 1
< 0.1%
286686.4311 1
< 0.1%
276248.8596 1
< 0.1%
269311.9298 1
< 0.1%
265789.4737 1
< 0.1%

Interactions

2025-06-17T18:30:38.539909image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:15.702442image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:17.504355image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:19.298816image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:21.029747image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:22.853036image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:24.614624image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:26.366672image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:28.241126image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:30.022726image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:31.772281image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:33.105646image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:34.873819image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:36.764917image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:38.680898image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:15.833597image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:17.627015image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:19.425356image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:21.164039image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:22.976768image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:24.748364image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:26.507044image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:28.375371image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:30.157434image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:31.859234image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:33.234155image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:35.003970image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:36.897035image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:38.810893image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:15.956829image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:17.742829image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:19.541867image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:21.288876image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:23.096589image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:24.876401image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:26.638865image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:28.505760image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:30.285362image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:32.013257image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:33.357978image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:35.129450image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:37.021355image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:38.950492image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:16.093864image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:17.872295image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:19.669407image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:21.415377image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:23.229120image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:25.000277image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:26.768765image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:28.635141image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:30.411352image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:32.096770image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:33.491018image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:35.267277image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:37.154090image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:39.081480image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:16.218546image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:17.990782image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:19.789880image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:21.540139image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:23.349197image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:25.128703image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:26.900206image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:28.765283image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:30.541995image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:32.181539image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:33.613423image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:35.391967image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:37.276417image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:39.219591image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:16.355952image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:18.119877image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:19.919761image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:21.673439image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:23.480174image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:25.255890image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:27.032126image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:28.894964image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:30.678152image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:32.264184image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:33.749483image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:35.527727image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:37.407692image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:39.356535image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:16.488976image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:18.249813image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:20.048855image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:21.799784image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:23.612501image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:25.379612image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:27.158409image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:29.021734image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:30.804294image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:32.347867image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:33.877160image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:35.665159image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:37.537042image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:39.495667image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:16.627466image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:18.379962image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:20.179442image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:21.930937image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:23.747999image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:25.507599image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:27.287567image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:29.152375image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:30.932388image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:32.433422image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:34.010431image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:35.801643image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:37.673189image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:39.632703image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:16.764987image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:18.596331image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:20.311487image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:22.062801image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:23.883473image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:25.634488image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:27.419876image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:29.281677image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:31.068531image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:32.521621image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:34.142773image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:35.938041image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:37.808958image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:39.727885image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:16.853365image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:18.678696image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:20.394917image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:22.145399image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:23.967827image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:25.717441image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:27.506893image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:29.366678image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:31.152291image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:32.606623image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:34.229372image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:36.027840image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:37.894152image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:39.860103image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:16.980504image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:18.800538image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:20.520151image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:22.273185image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:24.090807image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:25.845971image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:27.709232image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:29.498055image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:31.287100image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:32.706920image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:34.352673image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:36.156120image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:38.024142image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:39.994962image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:17.110317image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:18.923304image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:20.643740image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:22.398940image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:24.216412image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:25.976238image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:27.841713image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:29.628315image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:31.416382image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:32.792858image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:34.478995image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:36.285732image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:38.152288image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:40.133322image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:17.243856image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:19.051358image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:20.770858image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:22.528665image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:24.347818image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:26.104182image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:27.973190image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:29.758880image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:31.546915image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:32.883178image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:34.611771image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:36.492982image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:38.279484image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:40.265666image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:17.373615image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:19.172187image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:20.894697image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:22.656288image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:24.474778image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:26.230371image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:28.102081image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:29.886949image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:31.678894image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:32.975024image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:34.742249image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:36.622605image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
2025-06-17T18:30:38.404457image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/

Correlations

2025-06-17T18:31:00.280399image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
AccountTypeAlarmImmobiliserBankCalculatedPremiumPerTermCitizenshipConvertedCoverCategoryCoverGroupCoverTypeCustomValueEstimateCylindersExcessSelectedGenderIsVATRegisteredLegalTypeMainCrestaZoneMaritalStatusNewVehicleNumberOfDoorsPolicyIDPostalCodeProductProvinceRebuiltRegistrationYearSectionSubCrestaZoneSumInsuredTermFrequencyTitleTotalClaimsTotalPremiumTrackingDeviceTransactionMonthUnderwrittenCoverIDVehicleTypeWrittenOffbodytypecubiccapacitykilowattsmakemmcode
AccountType1.0000.0120.3030.0030.0441.0000.0710.0660.0590.0150.0260.0350.0650.0560.1580.1550.0300.0060.0590.1030.1310.0850.1351.0000.0540.0530.1820.0060.0120.0340.0020.0010.0960.0560.0980.0271.0000.0880.0490.0570.0830.064
AlarmImmobiliser0.0121.0000.0220.0000.0050.0000.0050.0040.0030.0000.0020.0050.0030.0000.0040.1210.0000.0000.0370.0390.0560.0040.0420.0000.1070.0040.1210.0000.0000.0040.0000.0000.0050.0080.0320.0990.0000.2100.0140.0820.1220.044
Bank0.3030.0221.0000.0060.1591.0000.1280.1940.0850.0480.0360.0310.0500.1140.1890.1180.0570.0280.0530.0710.1020.3760.0921.0000.0830.1280.1500.0190.0110.0600.0010.0030.0750.0280.0640.0381.0000.0590.0600.0620.2460.219
CalculatedPremiumPerTerm0.0030.0000.0061.0000.0001.0000.0400.0000.0100.1620.0120.0480.0000.0000.0120.0110.0000.000-0.0320.0580.0100.0130.0081.0000.1470.0000.0100.2490.0000.0000.0520.3950.0040.0000.0561.0001.0001.0000.0890.0561.0000.084
Citizenship0.0440.0050.1590.0001.0000.0060.0760.1050.0480.0030.0220.0320.3820.0240.0420.1050.2560.0060.1290.2430.1100.1420.0930.0030.0390.0220.1390.0050.0060.0590.0000.0000.1250.1600.2550.0250.0030.1030.0420.0340.2910.131
Converted1.0000.0001.0001.0000.0061.0000.0000.0000.0001.0000.0750.0060.0020.0000.0040.1260.0000.0000.0650.0350.0590.0020.1260.5970.0160.0020.1930.0000.0000.0030.0001.0000.0080.0120.0480.0400.5970.0550.0020.0000.2110.048
CoverCategory0.0710.0050.1280.0400.0760.0001.0000.9430.9880.0020.0230.8160.0810.0620.0830.0650.0750.0690.0760.1050.0740.6840.0710.0040.0930.9090.0740.7061.0000.0290.0280.0260.1340.0440.1130.0360.0040.1150.0730.0770.0780.104
CoverGroup0.0660.0040.1940.0000.1050.0000.9431.0000.9410.0060.0160.4150.0380.0750.1020.0690.0740.0690.0240.0560.0730.7690.0630.0000.0630.9980.1030.5081.0000.0220.0030.0000.1150.0200.0510.0290.0000.0440.0340.0310.1460.151
CoverType0.0590.0030.0850.0100.0480.0000.9880.9411.0000.0020.0190.6460.0670.0550.0490.0560.0740.0690.0370.0500.0620.5980.0590.0000.0530.9400.0760.7061.0000.0220.0270.0060.1110.0290.0540.0290.0000.0740.0320.0380.0550.062
CustomValueEstimate0.0150.0000.0480.1620.0031.0000.0020.0060.0021.0000.0490.0000.0000.0000.0010.0460.0000.000-0.0230.0120.0290.0010.0361.0000.8930.0060.0610.0250.0000.0020.0040.0770.0190.0000.0490.0541.0000.1550.2550.1540.0680.319
Cylinders0.0260.0020.0360.0120.0220.0750.0230.0160.0190.0491.0000.0170.0130.1280.1800.0480.0190.008-0.314-0.021-0.0370.0600.0540.000-0.0690.0130.0720.0020.0180.031-0.000-0.0020.0380.041-0.0210.4770.0000.4080.1900.2550.605-0.071
ExcessSelected0.0350.0050.0310.0480.0320.0060.8160.4150.6460.0000.0171.0000.0510.0150.0460.0410.0490.0060.0700.0960.0410.2000.0410.0140.0750.1250.0560.0920.0110.0170.0310.0350.0730.0400.1070.0330.0140.0960.0640.0700.0700.055
Gender0.0650.0030.0500.0000.3820.0020.0810.0380.0670.0000.0130.0511.0000.0160.0710.1310.2760.0080.0380.2440.1080.1300.1010.0000.0440.0180.2140.0030.0030.3300.0000.0000.0950.2410.2600.0170.0000.1740.0440.0410.1120.059
IsVATRegistered0.0560.0000.1140.0000.0240.0000.0620.0750.0550.0000.1280.0150.0161.0000.2990.2890.0050.0020.0150.1180.1420.0640.0880.0000.0760.0510.2890.0000.0010.0190.0000.0000.0010.0470.1250.0190.0000.0670.1570.1100.4130.303
LegalType0.1580.0040.1890.0120.0420.0040.0830.1020.0490.0010.1800.0460.0710.2991.0000.1560.0590.0080.1150.0990.1370.2050.1360.0000.0340.0430.1720.0120.0080.0390.0000.0080.0960.0600.0960.1450.0000.1580.1340.1870.2830.172
MainCrestaZone0.1550.1210.1180.0110.1050.1260.0650.0690.0560.0460.0480.0410.1310.2890.1561.0000.1210.0410.0850.1440.8070.1720.8270.0200.0810.0431.0000.0560.0260.0790.0020.0060.2290.0530.1460.0620.0200.1040.0860.1030.1120.102
MaritalStatus0.0300.0000.0570.0000.2560.0000.0750.0740.0740.0000.0190.0490.2760.0050.0590.1211.0000.0010.0220.0970.1180.0280.1040.0000.0290.0120.1440.0000.0010.0610.0000.0000.0480.0660.0800.0110.0000.0610.0180.0220.1020.081
NewVehicle0.0060.0000.0280.0000.0060.0000.0690.0690.0690.0000.0080.0060.0080.0020.0080.0410.0011.0000.0100.0340.0460.0030.0380.0000.0550.0100.1170.0000.0000.0190.0000.0000.0170.0140.0530.0040.0000.0250.0250.0240.1460.017
NumberOfDoors0.0590.0370.053-0.0320.1290.0650.0760.0240.037-0.023-0.3140.0700.0380.0150.1150.0850.0220.0101.000-0.0660.0930.2580.0760.0000.0710.0200.107-0.0050.0170.0220.001-0.0330.0370.035-0.0490.3990.0000.510-0.303-0.1930.554-0.171
PolicyID0.1030.0390.0710.0580.2430.0350.1050.0560.0500.012-0.0210.0960.2440.1180.0990.1440.0970.034-0.0661.0000.0470.1600.1290.0320.0860.0450.1870.0120.0250.0710.0020.1730.2940.2290.9300.0360.0320.0910.066-0.0320.0980.098
PostalCode0.1310.0560.1020.0100.1100.0590.0740.0730.0620.029-0.0370.0410.1080.1420.1370.8070.1180.0460.0930.0471.0000.1540.7460.0190.0130.0430.9440.0060.0270.065-0.006-0.0070.2180.0610.0600.0680.0190.112-0.152-0.2140.129-0.122
Product0.0850.0040.3760.0130.1420.0020.6840.7690.5980.0010.0600.2000.1300.0640.2050.1720.0280.0030.2580.1600.1541.0000.1370.0000.1000.5840.1810.0461.0000.0410.0010.0080.0630.1260.1430.0450.0000.5290.1850.2050.4380.323
Province0.1350.0420.0920.0080.0930.1260.0710.0630.0590.0360.0540.0410.1010.0880.1360.8270.1040.0380.0760.1290.7460.1371.0000.0110.0740.0370.9450.0180.0250.0700.0020.0050.2010.0630.1250.0740.0110.1120.0820.0920.1230.085
Rebuilt1.0000.0001.0001.0000.0030.5970.0040.0000.0001.0000.0000.0140.0000.0000.0000.0200.0000.0000.0000.0320.0190.0000.0111.0000.0120.0030.0180.0000.0000.0000.0001.0000.0070.0060.0300.0000.9840.0590.0090.0100.3380.000
RegistrationYear0.0540.1070.0830.1470.0390.0160.0930.0630.0530.893-0.0690.0750.0440.0760.0340.0810.0290.0550.0710.0860.0130.1000.0740.0121.0000.0770.1020.0260.1150.0430.0000.0570.2230.0330.0980.0600.0120.0720.1120.0960.1400.246
Section0.0530.0040.1280.0000.0220.0020.9090.9980.9400.0060.0130.1250.0180.0510.0430.0430.0120.0100.0200.0450.0430.5840.0370.0030.0771.0000.0640.1621.0000.0160.0050.0000.1040.0270.0450.0080.0030.0460.0220.0240.0800.058
SubCrestaZone0.1820.1210.1500.0100.1390.1930.0740.1030.0760.0610.0720.0560.2140.2890.1721.0000.1440.1170.1070.1870.9440.1810.9450.0180.1020.0641.0000.1240.0410.1660.0000.0040.2690.0570.1870.0980.0180.1230.1120.1210.0950.138
SumInsured0.0060.0000.0190.2490.0050.0000.7060.5080.7060.0250.0020.0920.0030.0000.0120.0560.0000.000-0.0050.0120.0060.0460.0180.0000.0260.1620.1241.0000.0680.000-0.0070.1010.0120.0030.0120.0100.0000.0150.0130.0040.1290.010
TermFrequency0.0120.0000.0110.0000.0060.0001.0001.0001.0000.0000.0180.0110.0030.0010.0080.0260.0010.0000.0170.0250.0271.0000.0250.0000.1151.0000.0410.0681.0000.0040.0000.0000.0130.0190.0180.0040.0000.0140.0140.0170.0800.009
Title0.0340.0040.0600.0000.0590.0030.0290.0220.0220.0020.0310.0170.3300.0190.0390.0790.0610.0190.0220.0710.0650.0410.0700.0000.0430.0160.1660.0000.0041.0000.0000.0000.0810.0400.0630.0130.0000.0740.0210.0290.0600.038
TotalClaims0.0020.0000.0010.0520.0000.0000.0280.0030.0270.004-0.0000.0310.0000.0000.0000.0020.0000.0000.0010.002-0.0060.0010.0020.0000.0000.0050.000-0.0070.0000.0001.0000.0630.0030.0020.0030.0030.0000.0060.0060.0060.0000.005
TotalPremium0.0010.0000.0030.3950.0001.0000.0260.0000.0060.077-0.0020.0350.0000.0000.0080.0060.0000.000-0.0330.173-0.0070.0080.0051.0000.0570.0000.0040.1010.0000.0000.0631.0000.0020.0000.1891.0001.0001.0000.0870.0481.0000.079
TrackingDevice0.0960.0050.0750.0040.1250.0080.1340.1150.1110.0190.0380.0730.0950.0010.0960.2290.0480.0170.0370.2940.2180.0630.2010.0070.2230.1040.2690.0120.0130.0810.0030.0021.0000.1970.2900.0210.0070.0760.0630.0640.1150.072
TransactionMonth0.0560.0080.0280.0000.1600.0120.0440.0200.0290.0000.0410.0400.2410.0470.0600.0530.0660.0140.0350.2290.0610.1260.0630.0060.0330.0270.0570.0030.0190.0400.0020.0000.1971.0000.2550.0150.0060.0700.0400.0460.0430.045
UnderwrittenCoverID0.0980.0320.0640.0560.2550.0480.1130.0510.0540.049-0.0210.1070.2600.1250.0960.1460.0800.053-0.0490.9300.0600.1430.1250.0300.0980.0450.1870.0120.0180.0630.0030.1890.2900.2551.0000.0410.0300.0910.056-0.0410.0960.089
VehicleType0.0270.0990.0381.0000.0250.0400.0360.0290.0290.0540.4770.0330.0170.0190.1450.0620.0110.0040.3990.0360.0680.0450.0740.0000.0600.0080.0980.0100.0040.0130.0031.0000.0210.0150.0411.0000.0000.5720.2600.3870.8010.502
WrittenOff1.0000.0001.0001.0000.0030.5970.0040.0000.0001.0000.0000.0140.0000.0000.0000.0200.0000.0000.0000.0320.0190.0000.0110.9840.0120.0030.0180.0000.0000.0000.0001.0000.0070.0060.0300.0001.0000.0590.0090.0100.3380.000
bodytype0.0880.2100.0591.0000.1030.0550.1150.0440.0740.1550.4080.0960.1740.0670.1580.1040.0610.0250.5100.0910.1120.5290.1120.0590.0720.0460.1230.0150.0140.0740.0061.0000.0760.0700.0910.5720.0591.0000.4580.4020.5210.296
cubiccapacity0.0490.0140.0600.0890.0420.0020.0730.0340.0320.2550.1900.0640.0440.1570.1340.0860.0180.025-0.3030.066-0.1520.1850.0820.0090.1120.0220.1120.0130.0140.0210.0060.0870.0630.0400.0560.2600.0090.4581.0000.7450.5750.666
kilowatts0.0570.0820.0620.0560.0340.0000.0770.0310.0380.1540.2550.0700.0410.1100.1870.1030.0220.024-0.193-0.032-0.2140.2050.0920.0100.0960.0240.1210.0040.0170.0290.0060.0480.0640.046-0.0410.3870.0100.4020.7451.0000.5340.540
make0.0830.1220.2461.0000.2910.2110.0780.1460.0550.0680.6050.0700.1120.4130.2830.1120.1020.1460.5540.0980.1290.4380.1230.3380.1400.0800.0950.1290.0800.0600.0001.0000.1150.0430.0960.8010.3380.5210.5750.5341.0001.000
mmcode0.0640.0440.2190.0840.1310.0480.1040.1510.0620.319-0.0710.0550.0590.3030.1720.1020.0810.017-0.1710.098-0.1220.3230.0850.0000.2460.0580.1380.0100.0090.0380.0050.0790.0720.0450.0890.5020.0000.2960.6660.5401.0001.000

Missing values

2025-06-17T18:30:41.627100image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
A simple visualization of nullity by column.
2025-06-17T18:30:44.783294image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
Nullity matrix is a data-dense display which lets you quickly visually pick out patterns in data completion.
2025-06-17T18:30:51.737477image/svg+xmlMatplotlib v3.10.0, https://matplotlib.org/
The correlation heatmap measures nullity correlation: how strongly the presence or absence of one variable affects the presence of another.

Sample

UnderwrittenCoverIDPolicyIDTransactionMonthIsVATRegisteredCitizenshipLegalTypeTitleLanguageBankAccountTypeMaritalStatusGenderCountryProvincePostalCodeMainCrestaZoneSubCrestaZoneItemTypemmcodeVehicleTypeRegistrationYearmakeModelCylinderscubiccapacitykilowattsbodytypeNumberOfDoorsVehicleIntroDateCustomValueEstimateAlarmImmobiliserTrackingDeviceCapitalOutstandingNewVehicleWrittenOffRebuiltConvertedCrossBorderNumberOfVehiclesInFleetSumInsuredTermFrequencyCalculatedPremiumPerTermExcessSelectedCoverCategoryCoverTypeCoverGroupSectionProductStatutoryClassStatutoryRiskTypeTotalPremiumTotalClaims
0145249128272015-03-01 00:00:00TrueClose CorporationMrEnglishFirst National BankCurrent accountNot specifiedNot specifiedSouth AfricaGauteng1459Rand EastRand EastMobility - Motor44069150.0Passenger Vehicle2004MERCEDES-BENZE 2406.02597.0130.0S/D4.06/2002119300.0YesNo119300More than 6 monthsNaNNaNNaNNaNNaN0.01Monthly25.0000Mobility - WindscreenWindscreenWindscreenComprehensive - TaxiMotor ComprehensiveMobility Metered Taxis: MonthlyCommercialIFRS Constant21.9298250.0
1145249128272015-05-01 00:00:00TrueClose CorporationMrEnglishFirst National BankCurrent accountNot specifiedNot specifiedSouth AfricaGauteng1459Rand EastRand EastMobility - Motor44069150.0Passenger Vehicle2004MERCEDES-BENZE 2406.02597.0130.0S/D4.06/2002119300.0YesNo119300More than 6 monthsNaNNaNNaNNaNNaN0.01Monthly25.0000Mobility - WindscreenWindscreenWindscreenComprehensive - TaxiMotor ComprehensiveMobility Metered Taxis: MonthlyCommercialIFRS Constant21.9298250.0
2145249128272015-07-01 00:00:00TrueClose CorporationMrEnglishFirst National BankCurrent accountNot specifiedNot specifiedSouth AfricaGauteng1459Rand EastRand EastMobility - Motor44069150.0Passenger Vehicle2004MERCEDES-BENZE 2406.02597.0130.0S/D4.06/2002119300.0YesNo119300More than 6 monthsNaNNaNNaNNaNNaN0.01Monthly25.0000Mobility - WindscreenWindscreenWindscreenComprehensive - TaxiMotor ComprehensiveMobility Metered Taxis: MonthlyCommercialIFRS Constant0.0000000.0
3145255128272015-05-01 00:00:00TrueClose CorporationMrEnglishFirst National BankCurrent accountNot specifiedNot specifiedSouth AfricaGauteng1459Rand EastRand EastMobility - Motor44069150.0Passenger Vehicle2004MERCEDES-BENZE 2406.02597.0130.0S/D4.06/2002119300.0YesNo119300More than 6 monthsNaNNaNNaNNaNNaN119300.00Monthly584.6468Mobility - Metered Taxis - R2000Own damageOwn DamageComprehensive - TaxiMotor ComprehensiveMobility Metered Taxis: MonthlyCommercialIFRS Constant512.8480700.0
4145255128272015-07-01 00:00:00TrueClose CorporationMrEnglishFirst National BankCurrent accountNot specifiedNot specifiedSouth AfricaGauteng1459Rand EastRand EastMobility - Motor44069150.0Passenger Vehicle2004MERCEDES-BENZE 2406.02597.0130.0S/D4.06/2002119300.0YesNo119300More than 6 monthsNaNNaNNaNNaNNaN119300.00Monthly584.6468Mobility - Metered Taxis - R2000Own damageOwn DamageComprehensive - TaxiMotor ComprehensiveMobility Metered Taxis: MonthlyCommercialIFRS Constant0.0000000.0
5145247128272015-01-01 00:00:00TrueClose CorporationMrEnglishFirst National BankCurrent accountNot specifiedNot specifiedSouth AfricaGauteng1459Rand EastRand EastMobility - Motor44069150.0Passenger Vehicle2004MERCEDES-BENZE 2406.02597.0130.0S/D4.06/2002119300.0YesNo119300More than 6 monthsNaNNaNNaNNaNNaN500000.00Monthly57.5412No excessThird PartyThird PartyComprehensive - TaxiMotor ComprehensiveMobility Metered Taxis: MonthlyCommercialIFRS Constant3.2564350.0
6145247128272015-04-01 00:00:00TrueClose CorporationMrEnglishFirst National BankCurrent accountNot specifiedNot specifiedSouth AfricaGauteng1459Rand EastRand EastMobility - Motor44069150.0Passenger Vehicle2004MERCEDES-BENZE 2406.02597.0130.0S/D4.06/2002119300.0YesNo119300More than 6 monthsNaNNaNNaNNaNNaN500000.00Monthly57.5412No excessThird PartyThird PartyComprehensive - TaxiMotor ComprehensiveMobility Metered Taxis: MonthlyCommercialIFRS Constant50.4747370.0
7145247128272015-06-01 00:00:00TrueClose CorporationMrEnglishFirst National BankCurrent accountNot specifiedNot specifiedSouth AfricaGauteng1459Rand EastRand EastMobility - Motor44069150.0Passenger Vehicle2004MERCEDES-BENZE 2406.02597.0130.0S/D4.06/2002119300.0YesNo119300More than 6 monthsNaNNaNNaNNaNNaN500000.00Monthly57.5412No excessThird PartyThird PartyComprehensive - TaxiMotor ComprehensiveMobility Metered Taxis: MonthlyCommercialIFRS Constant35.3323160.0
8145247128272015-08-01 00:00:00TrueClose CorporationMrEnglishFirst National BankCurrent accountNot specifiedNot specifiedSouth AfricaGauteng1459Rand EastRand EastMobility - Motor44069150.0Passenger Vehicle2004MERCEDES-BENZE 2406.02597.0130.0S/D4.06/2002119300.0YesNo119300More than 6 monthsNaNNaNNaNNaNNaN500000.00Monthly57.5412No excessThird PartyThird PartyComprehensive - TaxiMotor ComprehensiveMobility Metered Taxis: MonthlyCommercialIFRS Constant0.0000000.0
9145245128272015-03-01 00:00:00TrueClose CorporationMrEnglishFirst National BankCurrent accountNot specifiedNot specifiedSouth AfricaGauteng1459Rand EastRand EastMobility - Motor44069150.0Passenger Vehicle2004MERCEDES-BENZE 2406.02597.0130.0S/D4.06/2002119300.0YesNo119300More than 6 monthsNaNNaNNaNNaNNaN5000000.00Monthly1.1508No excessPassenger LiabilityPassenger LiabilityComprehensive - TaxiMotor ComprehensiveMobility Metered Taxis: MonthlyCommercialIFRS Constant1.0094740.0
UnderwrittenCoverIDPolicyIDTransactionMonthIsVATRegisteredCitizenshipLegalTypeTitleLanguageBankAccountTypeMaritalStatusGenderCountryProvincePostalCodeMainCrestaZoneSubCrestaZoneItemTypemmcodeVehicleTypeRegistrationYearmakeModelCylinderscubiccapacitykilowattsbodytypeNumberOfDoorsVehicleIntroDateCustomValueEstimateAlarmImmobiliserTrackingDeviceCapitalOutstandingNewVehicleWrittenOffRebuiltConvertedCrossBorderNumberOfVehiclesInFleetSumInsuredTermFrequencyCalculatedPremiumPerTermExcessSelectedCoverCategoryCoverTypeCoverGroupSectionProductStatutoryClassStatutoryRiskTypeTotalPremiumTotalClaims
1000088315283892015-05-01 00:00:00FalseZWIndividualMrEnglishABSA BankSavings accountSingleMaleSouth AfricaWestern Cape7493Karoo 1 (Northeast of Cape Town)Northeast of CTMobility - Motor4614100.0Passenger Vehicle2013B.A.WSASUKA 2.7i (16 SEAT)4.02693.0110.0B/S4.02013/01/01 12:00:00 AMNaNYesNo0More than 6 monthsNoNoNoNaNNaN318300.0Monthly828.1121Mobility - Taxi with value more than R100 000 - R5 000Own DamageOwn DamageComprehensive - TaxiMotor ComprehensiveMobility Commercial Cover: MonthlyCommercialIFRS Constant726.4141230.0
1000089315283892015-07-01 00:00:00FalseZWIndividualMrEnglishABSA BankSavings accountSingleMaleSouth AfricaWestern Cape7493Karoo 1 (Northeast of Cape Town)Northeast of CTMobility - Motor4614100.0Passenger Vehicle2013B.A.WSASUKA 2.7i (16 SEAT)4.02693.0110.0B/S4.02013/01/01 12:00:00 AMNaNYesNo0More than 6 monthsNoNoNoNaNNaN318300.0Monthly828.1121Mobility - Taxi with value more than R100 000 - R5 000Own DamageOwn DamageComprehensive - TaxiMotor ComprehensiveMobility Commercial Cover: MonthlyCommercialIFRS Constant726.4141230.0
1000090315203892014-09-01 00:00:00FalseZWIndividualMrEnglishABSA BankSavings accountSingleMaleSouth AfricaWestern Cape7493Karoo 1 (Northeast of Cape Town)Northeast of CTMobility - Motor4614100.0Passenger Vehicle2013B.A.WSASUKA 2.7i (16 SEAT)4.02693.0110.0B/S4.02013/01/01 12:00:00 AMNaNYesNo0More than 6 monthsNoNoNoNaNNaN500000.0Monthly395.8481No excessThird PartyThird PartyComprehensive - TaxiMotor ComprehensiveMobility Commercial Cover: MonthlyCommercialIFRS Constant347.2351750.0
1000091315203892014-11-01 00:00:00FalseZWIndividualMrEnglishABSA BankSavings accountSingleMaleSouth AfricaWestern Cape7493Karoo 1 (Northeast of Cape Town)Northeast of CTMobility - Motor4614100.0Passenger Vehicle2013B.A.WSASUKA 2.7i (16 SEAT)4.02693.0110.0B/S4.02013/01/01 12:00:00 AMNaNYesNo0More than 6 monthsNoNoNoNaNNaN500000.0Monthly395.8481No excessThird PartyThird PartyComprehensive - TaxiMotor ComprehensiveMobility Commercial Cover: MonthlyCommercialIFRS Constant347.2351750.0
1000092315203892015-01-01 00:00:00FalseZWIndividualMrEnglishABSA BankSavings accountSingleMaleSouth AfricaWestern Cape7493Karoo 1 (Northeast of Cape Town)Northeast of CTMobility - Motor4614100.0Passenger Vehicle2013B.A.WSASUKA 2.7i (16 SEAT)4.02693.0110.0B/S4.02013/01/01 12:00:00 AMNaNYesNo0More than 6 monthsNoNoNoNaNNaN500000.0Monthly395.8481No excessThird PartyThird PartyComprehensive - TaxiMotor ComprehensiveMobility Commercial Cover: MonthlyCommercialIFRS Constant347.2351750.0
1000093315203892015-04-01 00:00:00FalseZWIndividualMrEnglishABSA BankSavings accountSingleMaleSouth AfricaWestern Cape7493Karoo 1 (Northeast of Cape Town)Northeast of CTMobility - Motor4614100.0Passenger Vehicle2013B.A.WSASUKA 2.7i (16 SEAT)4.02693.0110.0B/S4.02013/01/01 12:00:00 AMNaNYesNo0More than 6 monthsNoNoNoNaNNaN500000.0Monthly395.8481No excessThird PartyThird PartyComprehensive - TaxiMotor ComprehensiveMobility Commercial Cover: MonthlyCommercialIFRS Constant347.2351750.0
1000094315203892015-06-01 00:00:00FalseZWIndividualMrEnglishABSA BankSavings accountSingleMaleSouth AfricaWestern Cape7493Karoo 1 (Northeast of Cape Town)Northeast of CTMobility - Motor4614100.0Passenger Vehicle2013B.A.WSASUKA 2.7i (16 SEAT)4.02693.0110.0B/S4.02013/01/01 12:00:00 AMNaNYesNo0More than 6 monthsNoNoNoNaNNaN500000.0Monthly395.8481No excessThird PartyThird PartyComprehensive - TaxiMotor ComprehensiveMobility Commercial Cover: MonthlyCommercialIFRS Constant347.2351750.0
1000095315203892015-08-01 00:00:00FalseZWIndividualMrEnglishABSA BankSavings accountSingleMaleSouth AfricaWestern Cape7493Karoo 1 (Northeast of Cape Town)Northeast of CTMobility - Motor4614100.0Passenger Vehicle2013B.A.WSASUKA 2.7i (16 SEAT)4.02693.0110.0B/S4.02013/01/01 12:00:00 AMNaNYesNo0More than 6 monthsNoNoNoNaNNaN500000.0Monthly395.8481No excessThird PartyThird PartyComprehensive - TaxiMotor ComprehensiveMobility Commercial Cover: MonthlyCommercialIFRS Constant347.2351750.0
1000096315193892014-07-01 00:00:00FalseZWIndividualMrEnglishABSA BankSavings accountSingleMaleSouth AfricaWestern Cape7493Karoo 1 (Northeast of Cape Town)Northeast of CTMobility - Motor4614100.0Passenger Vehicle2013B.A.WSASUKA 2.7i (16 SEAT)4.02693.0110.0B/S4.02013/01/01 12:00:00 AMNaNYesNo0More than 6 monthsNoNoNoNaNNaN5000000.0Monthly2.6391No excessPassenger LiabilityPassenger LiabilityComprehensive - TaxiMotor ComprehensiveMobility Commercial Cover: MonthlyCommercialIFRS Constant2.3150000.0
1000097315193892015-02-01 00:00:00FalseZWIndividualMrEnglishABSA BankSavings accountSingleMaleSouth AfricaWestern Cape7493Karoo 1 (Northeast of Cape Town)Northeast of CTMobility - Motor4614100.0Passenger Vehicle2013B.A.WSASUKA 2.7i (16 SEAT)4.02693.0110.0B/S4.02013/01/01 12:00:00 AMNaNYesNo0More than 6 monthsNoNoNoNaNNaN5000000.0Monthly2.6391No excessPassenger LiabilityPassenger LiabilityComprehensive - TaxiMotor ComprehensiveMobility Commercial Cover: MonthlyCommercialIFRS Constant2.3150000.0